1
|
Li C, Zhang C, Bai D, Cui Y. Clinical and molecular findings in children with retinitis pigmentosa. Ophthalmic Genet 2024; 45:441-451. [PMID: 39206744 DOI: 10.1080/13816810.2024.2357305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/08/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE To study the clinical and genetic features of a cohort of RP children. METHODS We identified 46 RP patients with pathogenic or likely pathogenic mutations among 96 patients with a clinical diagnosis of retinitis pigmentosa. All of the patients underwent comprehensive clinical examinations and genetic testing. A retrospective study was conducted on 46 children with retinitis pigmentosa. The genetic and clinical characteristics of children with different genotypes were analyzed. RESULTS Among the 46 children, 13 inherited X-linked gene mutations, including 9 RPGR and 4 RP2 mutations. There were 10 cases of autosomal dominant genes and 23 cases of autosomal recessive genes. XLRP accounted for a larger proportion of children, as observed in previous studies on RP. We found that RPGR genes were the most commonly mutated genes in RP children. The most frequently mutated gene was RPGR (9.3%), followed by RP2 (4.2%) and RPE65 (4.2%). Forty-six patients had mutations in 21 different genes, 19 of which were novel mutations.Most children with XLRP have a high degree of myopia, poor vision, and severe clinical symptoms. Frameshift mutations were more common in XLRP, followed by nonsense mutations. The onset of XLRP is relatively serious since childhood. Most children with ADRP have relatively good visual acuity and mild clinical symptoms, and missense mutations are common. The clinical manifestations of ARRP in children are more severe than those of ADRP in children but milder than those of XLRP in children, and missense mutations are common. The manifestations of RPE65 mutations are also severe and appear early. CONCLUSIONS Our results revealed that XLRP gene mutations were more common in children than in adults, as observed in previous studies on RP. The proportion of RP children with ADRP is relatively small. The new findings in our study polished the spectrum of novel mutations and the proportions of different genotypes in pediatric patients. The onset of XLRP occurred earlier. The genes with a high incidence in children were all relatively severe gene types of RP. This comprehensive database may provide essential information regarding the initial stage of RP.
Collapse
Affiliation(s)
- Cheng Li
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chengyue Zhang
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Dayong Bai
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yanhui Cui
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
2
|
Ma Z, Hao J, Yang Z, Zhang M, Xin J, Bi H, Guo D. Research Progress on the Role of Ubiquitination in Eye Diseases. Cell Biochem Biophys 2024; 82:1825-1836. [PMID: 38913283 DOI: 10.1007/s12013-024-01381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
The occurrence and development of ophthalmic diseases are related to the dysfunction of eye tissues. Ubiquitin is an important form of protein post-translational modification, which plays an essential role in the occurrence and development of diseases through specific modification of target proteins. Ubiquitination governs a variety of intracellular signal transduction processes, including proteasome degradation, DNA damage repair, and cell cycle progression. Studies have found that ubiquitin can play a role in eye diseases such as cataracts, glaucoma, keratopathy, retinopathy, and eye tumors. In this paper, the role of protein ubiquitination in eye diseases was reviewed.
Collapse
Affiliation(s)
- Zhongyu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Zhaohui Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Miao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jizhao Xin
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, 250002, China.
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| | - Dadong Guo
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, 250002, China.
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| |
Collapse
|
3
|
Lei XL, Yang QL, Wei YZ, Qiu X, Zeng HY, Yan AM, Peng K, Li YL, Rao FQ, Chen FH, Xiang L, Wu KC. Identification of a novel ferroptosis-related gene signature associated with retinal degeneration induced by light damage in mice. Heliyon 2023; 9:e23002. [PMID: 38144322 PMCID: PMC10746433 DOI: 10.1016/j.heliyon.2023.e23002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Background Neurodegenerative retinal diseases such as retinitis pigmentosa are serious disorders that may cause irreversible visual impairment. Ferroptosis is a novel type of programmed cell death, and the involvement of ferroptosis in retinal degeneration is still unclear. This study aimed to investigate the related ferroptosis genes in a mice model of retinal degeneration induced by light damage. Methods A public dataset of GSE10528 deriving from the Gene Expression Omnibus database was analyzed to identify the differentially expressed genes (DEGs). Gene set enrichment analysis between light damage and control group was conducted. The differentially expressed ferroptosis-related genes (DE-FRGs) were subsequently identified by intersecting the DEGs with a ferroptosis genes dataset retrieved from the FerrDb database. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were further performed using the DE-FRGs. A protein-protein interaction (PPI) network was constructed to identify hub ferroptosis-related genes (HFRGs). The microRNAs (miRNAs)-HFRGs, transcription factors (TFs)-HFRGs networks as well as target drugs potentially interacting with HFRGs were analyzed utilizing bioinformatics algorithms. Results A total of 932 DEGs were identified between the light damage and control group. Among these, 25 genes were associated with ferroptosis. GO and KEGG analyses revealed that these DE-FRGs were mainly enriched in apoptotic signaling pathway, response to oxidative stress and autophagy, ferroptosis, necroptosis and cytosolic DNA-sensing pathway. Through PPI network analysis, six hub ferroptosis-related genes (Jun, Stat3, Hmox1, Atf3, Hspa5 and Ripk1) were ultimately identified. All of them were upregulated in light damage retinas, as verified by the GSE146176 dataset. Bioinformatics analyses predicated that 116 miRNAs, 23 TFs and several potential therapeutic compounds might interact with the identified HFRGs. Conclusion Our study may provide novel potential biomarkers, therapeutic targets and new insights into the ferroptosis landscape in retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin-Lan Lei
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
- Aier Eye Hospital of Wuhan University, Wuhan, China
| | - Qiao-Li Yang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yong-Zhao Wei
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Xu Qiu
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Hui-Yi Zeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ai-Min Yan
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Kai Peng
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Ying-Lin Li
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Feng-Qin Rao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng-Hua Chen
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
| | - Lue Xiang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Kun-Chao Wu
- The Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Mansouri N, Darabi P, Favaedi M, Faizmahdavi H, Nankali S, Assefi M, Sharafshah A, Omarmeli V. A Novel Arg120Pro Mutation in the RP2 Gene in an Iranian Family with X-linked Retinitis Pigmentosa: A Case Report. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:606-611. [PMID: 38094283 PMCID: PMC10715112 DOI: 10.30476/ijms.2022.96392.2792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/22/2022] [Accepted: 11/22/2022] [Indexed: 12/18/2023]
Abstract
As the most common type of inherited retinal degenerative disease, retinitis pigmentosa (RP) has taken clinical and prenatal attention. Considering the clinical importance of consanguineous marriages, new mutations in this type of pregnancy have a high risk and increase the importance of Prenatal Diagnosis (PND). In vitro analysis was done through Whole Exome Sequencing (WES) for a 36-year-old woman who was referred to a genetic laboratory in Kermanshah in 2021 for PND. The woman had consanguineous marriage and was pregnant with twins (a boy and a girl). Mutation confirmation tests were also performed on her husband and both fetuses to find mutations. Moreover, in silico analyses were performed by SWISS-MODEL, ProSA, Molprobity, Swiss-Pdb Viewer, and ERRAT. The WES analysis showed a novel mutation of the RP2 gene (exon2:c. 359G>C: p.R120P) in the 36-year-old pregnant woman. Mutations identified in her husband and her twins revealed changes in protein conformations. Further modeling and validation evaluations showed the replacement of Arg by Pro at the 120th residue site of the cognate protein. For the first time, our report introduced a novel missense mutation in the RP2 gene associated with severe signs of RP in an Iranian family based on an X-linked recessive pattern of genetic inheritance. These findings may pave the way for a better diagnosis of RP in genetic counseling and PND.
Collapse
Affiliation(s)
- Nasrin Mansouri
- Department of Obstetrics and Gynecology, Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Masoumeh Favaedi
- Health Network of Kermanshah, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hanieh Faizmahdavi
- Department of Obstetrics and Gynecology, Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Nankali
- Department of Obstetrics and Gynecology, Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Alireza Sharafshah
- Dr. Shaveisi-zadeh Medical Genetic Lab, Kermanshah, Iran
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, School of Science and Biotechnology, University of Isfahan, Isfahan, Iran
| | - Vahid Omarmeli
- Dr. Shaveisi-zadeh Medical Genetic Lab, Kermanshah, Iran
- Department of Biology, School of Bioscience, Islamic Azad University, Tehran North Branch, Tehran, Iran
| |
Collapse
|
5
|
Sadeh TT, Baines RA, Black GC, Manson F. Ca v1.4 congenital stationary night blindness is associated with an increased rate of proteasomal degradation. Front Cell Dev Biol 2023; 11:1161548. [PMID: 37206923 PMCID: PMC10188973 DOI: 10.3389/fcell.2023.1161548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Pathogenic, generally loss-of-function, variants in CACNA1F, encoding the Cav1.4α1 calcium channel, underlie congenital stationary night blindness type 2 (CSNB2), a rare inherited retinal disorder associated with visual disability. To establish the underlying pathomechanism, we investigated 10 clinically derived CACNA1F missense variants located across pore-forming domains, connecting loops, and the carboxy-tail domain of the Cav1.4α subunit. Homology modeling showed that all variants cause steric clashes; informatics analysis correctly predicted pathogenicity for 7/10 variants. In vitro analyses demonstrated that all variants cause a decrease in current, global expression, and protein stability and act through a loss-of-function mechanism and suggested that the mutant Cav1.4α proteins were degraded by the proteasome. We showed that the reduced current for these variants could be significantly increased through treatment with clinical proteasome inhibitors. In addition to facilitating clinical interpretation, these studies suggest that proteasomal inhibition represents an avenue of potential therapeutic intervention for CSNB2.
Collapse
Affiliation(s)
- Tal T. Sadeh
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Richard A. Baines
- Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Graeme C. Black
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, St Mary’s Hospital, Manchester, United Kingdom
- *Correspondence: Graeme C. Black,
| | - Forbes Manson
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
A multivesicular body-like organelle mediates stimulus-regulated trafficking of olfactory ciliary transduction proteins. Nat Commun 2022; 13:6889. [PMID: 36371422 PMCID: PMC9653401 DOI: 10.1038/s41467-022-34604-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Stimulus transduction in cilia of olfactory sensory neurons is mediated by odorant receptors, Gαolf, adenylate cyclase-3, cyclic nucleotide-gated and chloride ion channels. Mechanisms regulating trafficking and localization of these proteins in the dendrite are unknown. By lectin/immunofluorescence staining and in vivo correlative light-electron microscopy (CLEM), we identify a retinitis pigmentosa-2 (RP2), ESCRT-0 and synaptophysin-containing multivesicular organelle that is not part of generic recycling/degradative/exosome pathways. The organelle's intraluminal vesicles contain the olfactory transduction proteins except for Golf subunits Gγ13 and Gβ1. Instead, Gβ1 colocalizes with RP2 on the organelle's outer membrane. The organelle accumulates in response to stimulus deprivation, while odor stimuli or adenylate cyclase activation cause outer membrane disintegration, release of intraluminal vesicles, and RP2/Gβ1 translocation to the base of olfactory cilia. Together, these findings reveal the existence of a dendritic organelle that mediates both stimulus-regulated storage of olfactory ciliary transduction proteins and membrane-delimited sorting important for G protein heterotrimerization.
Collapse
|
7
|
Bhardwaj A, Yadav A, Yadav M, Tanwar M. Genetic dissection of non-syndromic retinitis pigmentosa. Indian J Ophthalmol 2022; 70:2355-2385. [PMID: 35791117 PMCID: PMC9426071 DOI: 10.4103/ijo.ijo_46_22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Retinitis pigmentosa (RP) belongs to a group of pigmentary retinopathies. It is the most common form of inherited retinal dystrophy, characterized by progressive degradation of photoreceptors that leads to nyctalopia, and ultimately, complete vision loss. RP is distinguished by the continuous retinal degeneration that progresses from the mid-periphery to the central and peripheral retina. RP was first described and named by Franciscus Cornelius Donders in the year 1857. It is one of the leading causes of bilateral blindness in adults, with an incidence of 1 in 3000 people worldwide. In this review, we are going to focus on the genetic heterogeneity of this disease, which is provided by various inheritance patterns, numerosity of variations and inter-/intra-familial variations based upon penetrance and expressivity. Although over 90 genes have been identified in RP patients, the genetic cause of approximately 50% of RP cases remains unknown. Heterogeneity of RP makes it an extremely complicated ocular impairment. It is so complicated that it is known as “fever of unknown origin”. For prognosis and proper management of the disease, it is necessary to understand its genetic heterogeneity so that each phenotype related to the various genetic variations could be treated.
Collapse
Affiliation(s)
- Aarti Bhardwaj
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Anshu Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Manoj Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Mukesh Tanwar
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| |
Collapse
|
8
|
Retinitis pigmentosa 2 pathogenic mutants degrade through BAG6/HUWE1 complex. Exp Eye Res 2022; 220:109110. [DOI: 10.1016/j.exer.2022.109110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 05/08/2022] [Indexed: 11/21/2022]
|
9
|
Hong Y, Liang YP, Chen WQ, You LX, Ni QF, Gao XY, Lin XR. Protective effects of upregulated HO-1 gene against the apoptosis of human retinal pigment epithelial cells in vitro. Int J Ophthalmol 2021; 14:649-655. [PMID: 34012878 DOI: 10.18240/ijo.2021.05.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/25/2021] [Indexed: 01/13/2023] Open
Abstract
AIM To investigate the protective effect of heme oxygenase-1 (HO-1) against H2O2-induced apoptosis in human ARPE-19 cells. METHODS The lentiviral vector expressing HO-1 was prepared and transfected into apoptotic ARPE-19 cells induced by H2O2. Functional experiments including cell counting kit-8 (CCK-8) assay, flow cytometry (FCM) and mitochondrial membrane potential assay were conducted. RESULTS The ultrastructure of ARPE-19 cells was observed using transmission electron microscope (TEM). It was found that exogenous HO-1 significantly ameliorated H2O2-induced loss of cell viability, apoptosis and intracellular levels of reactive oxygen species (ROS) in ARPE-19 cells. The overexpression of HO-1 facilitated the transfer of nuclear factor erythroid-2-related factor 2 (Nrf2) from cytoplasm to nucleus, which in turn upregualted expressions HO-1 and B-cell lymphoma-2 (Bcl-2). Furthermore, HO-1 upregulation further inhibited H2O2-induced release of cysteinyl aspartate specific proteinase-3 (caspase-3). CONCLUSION Exogenous HO-1 protect ARPE-19 cells against H2O2-induced oxidative stress by regulating the expressions of Nrf2, HO-1, Bcl-2, and caspase-3.
Collapse
Affiliation(s)
- Yu Hong
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Yu-Ping Liang
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Wei-Qi Chen
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Liu-Xia You
- Department of Clinical Laboratory, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Qing-Feng Ni
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Xiu-Yun Gao
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Xiao-Rong Lin
- Department of Clinical Laboratory, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| |
Collapse
|
10
|
Fu L, Li Y, Yao S, Guo Q, You Y, Zhu X, Lei B. Autosomal Recessive Rod-Cone Dystrophy Associated With Compound Heterozygous Variants in ARL3 Gene. Front Cell Dev Biol 2021; 9:635424. [PMID: 33748123 PMCID: PMC7969994 DOI: 10.3389/fcell.2021.635424] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/15/2021] [Indexed: 01/17/2023] Open
Abstract
Purpose: ARL3 (ADP-ribosylation factor-like 3) variants cause autosomal dominant retinitis pigmentosa (RP) or autosomal recessive Joubert syndrome. We found a family with rod-cone dystrophy (RCD) and verified it was associated with compound heterozygous variants in ARL3 gene. Methods: Ophthalmic examinations including optical coherence tomography and electroretinogram (ERG) were performed. Targeted next generation sequencing (NGS) was performed for the proband using a custom designed panel. Sanger sequencing and co-segregation were conducted in the family members. Changes of protein structure mediated by the variants were studied in vitro. ARL3 protein stability and its interaction with RP2 protein were assessed by cycloheximide chase assay and co-immunoprecipitation (Co-IP) assay. Results: Visual acuity of the 18-year-old male proband was 0.25 in the right and 0.20 in the left eye, while his non-consanguineous parents and sister was normal. The proband showed signs of RCD, including nyctalopia, peripheral field loss, bone-spicule deposits in the retina, and reduced ERG responses. The father, aged 50 years old, showed visual acuity of 1.0 in both eyes. Unlike the proband, he presented late onset and mild cone-rod dystrophy (CRD), including macular atrophy, central scotomata, moderate reduction in photopic ERG responses. None of all the family members had hearing abnormality, mental dysplasia or gait instability. We identified two novel compound heterozygous variants (c.91A>G, p.T31A; c.353G>T, p.C118F) in ARL3 in the proband, while his father only had variant c.91A>G. Bioinformatics analysis indicated amino acid positions of the two variants are highly conserved among species. The in silico tools predicted the variants to be harmful. Protein structure analysis showed the two variants had potential to alter the protein structure. Based on the ACMG guidelines, the two variants were likely pathogenic. In addition, the ARL3 mutations destabilized ARL3 protein, and the mutation c.353G>T disrupted the interaction between ARL3 and RP2 in HEK293T cells. Conclusions: We showed novel compound heterozygous variants in ARL3 were associated with early onset of autosomal recessive RCD, while c.91A>G along may be associated with a late onset of dominant CRD. The two variants in ARL3 could be causative by destabilizing ARL3 protein and impairing its interaction with RP2 protein.
Collapse
Affiliation(s)
- Leming Fu
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ya Li
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Institute/Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shun Yao
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Institute/Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Qingge Guo
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Institute/Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ya You
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Institute/Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xianjun Zhu
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Lei
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Institute/Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
11
|
Fujinami K, Liu X, Ueno S, Mizota A, Shinoda K, Kuniyoshi K, Fujinami-Yokokawa Y, Yang L, Arno G, Pontikos N, Kameya S, Kominami T, Terasaki H, Sakuramoto H, Nakamura N, Kurihara T, Tsubota K, Miyake Y, Yoshiake K, Iwata T, Tsunoda K. RP2-associated retinal disorder in a Japanese cohort: Report of novel variants and a literature review, identifying a genotype-phenotype association. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:675-693. [PMID: 32875684 DOI: 10.1002/ajmg.c.31830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 01/10/2023]
Abstract
The retinitis pigmentosa 2 (RP2) gene is one of the causative genes for X-linked inherited retinal disorder. We characterized the clinical/genetic features of four patients with RP2-associated retinal disorder (RP2-RD) from four Japanese families in a nationwide cohort. A systematic review of RP2-RD in the Japanese population was also performed. All four patients were clinically diagnosed with retinitis pigmentosa (RP). The mean age at examination was 36.5 (10-47) years, and the mean visual acuity in the right/left eye was 1.40 (0.52-2.0)/1.10 (0.52-1.7) in the logarithm of the minimum angle of resolution unit, respectively. Three patients showed extensive retinal atrophy with macular involvement, and one had central retinal atrophy. Four RP2 variants were identified, including two novel missense (p.Ser6Phe, p.Leu189Pro) and two previously reported truncating variants (p.Arg120Ter, p.Glu269CysfsTer3). The phenotypes of two patients with truncating variants were more severe than the phenotypes of two patients with missense variants. A systematic review revealed additional 11 variants, including three missense and eight deleterious (null) variants, and a statistically significant association between phenotype severity and genotype severity was revealed. The clinical and genetic spectrum of RP2-RD was illustrated in the Japanese population, identifying the characteristic features of a severe form of RP with early macular involvement.
Collapse
Affiliation(s)
- Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Xiao Liu
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Mizota
- Department of Ophthalmology, Teikyo University, Tokyo, Japan
| | - Kei Shinoda
- Department of Ophthalmology, Teikyo University, Tokyo, Japan.,Department of Ophthalmology, Saitama Medical University, Moroyama Campus, Saitama, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yu Fujinami-Yokokawa
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,UCL Institute of Ophthalmology, London, UK.,Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan.,Division of Public Health, Yokokawa Clinic, Suita, Japan
| | - Lizhu Yang
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Gavin Arno
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK.,North East Thames Regional Genetics Service, UCL Great Ormond Street Institute of Child Health, NHS Foundation Trust, London, UK
| | - Nikolas Pontikos
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Shuhei Kameya
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan
| | - Taro Kominami
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Sakuramoto
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Natsuko Nakamura
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Teikyo University, Tokyo, Japan.,Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yozo Miyake
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Aichi Medical University, Nagakute, Japan.,Next vision, Kobe Eye Center, Kobe, Japan
| | - Kazutoshi Yoshiake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kazushige Tsunoda
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | | |
Collapse
|