1
|
Guo C, Zhang K, Li C, Xing R, Xu S, Wang D, Wang X. Cyp19a1a Promotes Ovarian Maturation through Regulating E2 Synthesis with Estrogen Receptor 2a in Pampus argenteus (Euphrasen, 1788). Int J Mol Sci 2024; 25:1583. [PMID: 38338860 PMCID: PMC10855460 DOI: 10.3390/ijms25031583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In the artificial breeding of Pampus argenteus (Euphrasen, 1788), female fish spawn before male release sperm, which indicates rapid ovarian development. In fish, aromatase is responsible for converting androgens into estrogens and estrogen plays a crucial role in ovarian development. In this study, we aimed to investigate the potential role of brain-type and ovarian-type aromatase to study the rapid ovarian development mechanism. The results showed that cyp19a1a was mainly expressed in the ovary and could be classified as the ovarian type, whereas cyp19a1b could be considered as the brain type for its expression was mainly in the brain. During ovarian development, the expression of cyp19a1a in the ovary significantly increased from stage IV to stage V and Cyp19a1a signals were present in the follicle cells, while cyp19a1b expression in the pituitary gland decreased from stage IV to stage V. To further investigate the function of Cyp19a1a, recombinant Cyp19a1a (rCyp19a1a) was produced and specific anti-Cyp19a1a antiserum was obtained. The expressions of cyp19a1a, estrogen receptors 2 alpha (esr2a), and androgen receptor alpha (arα) were significantly upregulated in the presence of rCyp19a1a. Meanwhile, cyp19a1a was expressed significantly after E2 treatment in both ovarian and testicular tissue culture. Taken together, we found two forms of aromatase in silver pomfret. The ovarian-type aromatase might play an important role in ovarian differentiation and maturation, and participate in E2 synthesis through co-regulation with esr2a. The brain-type aromatase cyp19a1b might be involved in the regulation of both brain and gonadal development.
Collapse
Affiliation(s)
- Chunyang Guo
- College of Marine Science, Ningbo University, Ningbo 315211, China; (C.G.); (K.Z.); (C.L.); (R.X.); (S.X.); (D.W.)
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Kai Zhang
- College of Marine Science, Ningbo University, Ningbo 315211, China; (C.G.); (K.Z.); (C.L.); (R.X.); (S.X.); (D.W.)
| | - Chang Li
- College of Marine Science, Ningbo University, Ningbo 315211, China; (C.G.); (K.Z.); (C.L.); (R.X.); (S.X.); (D.W.)
| | - Ruixue Xing
- College of Marine Science, Ningbo University, Ningbo 315211, China; (C.G.); (K.Z.); (C.L.); (R.X.); (S.X.); (D.W.)
| | - Shanliang Xu
- College of Marine Science, Ningbo University, Ningbo 315211, China; (C.G.); (K.Z.); (C.L.); (R.X.); (S.X.); (D.W.)
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Danli Wang
- College of Marine Science, Ningbo University, Ningbo 315211, China; (C.G.); (K.Z.); (C.L.); (R.X.); (S.X.); (D.W.)
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Xubo Wang
- College of Marine Science, Ningbo University, Ningbo 315211, China; (C.G.); (K.Z.); (C.L.); (R.X.); (S.X.); (D.W.)
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Shu T, Chen Y, Xiao K, Huang H, Jia J, Yu Z, Jiang W, Yang J. Effects of short-term water velocity stimulation on the biochemical and transcriptional responses of grass carp ( Ctenopharyngodon idellus). Front Physiol 2023; 14:1248999. [PMID: 37719458 PMCID: PMC10501314 DOI: 10.3389/fphys.2023.1248999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Since 2011, ecological operation trials of the Three Gorges Reservoir (TGR) have been continuously conducted to improve the spawning quantity of the four major Chinese carp species below the Gezhouba Dam. In particular, exploring the effects of short-term water velocity stimulation on ovarian development in grass carp (Ctenopharyngodon idellus) is essential to understand the response of natural reproduction to ecological flows. We performed ovary histology analysis and biochemical assays among individuals with or without stimulation by running water. Although there were no obvious effects on the ovarian development characteristics of grass carp under short-term water velocity stimulation, estradiol, progesterone, follicle-stimulating hormone (FSH), and triiodothyronine (T3) concentrations were elevated. Then, we further explored the ovarian development of grass carp under short-term water velocity stimulation by RNA sequencing of ovarian tissues. In total, 221 and 741 genes were up- or downregulated under short-term water velocity stimulation, respectively, compared to the control group. The majority of differentially expressed genes (DEGs) were enriched in pathways including ABC transporters, cytokine-cytokine receptor interaction, ECM-receptor interaction, and steroid hormone biosynthesis. Important genes including gpr4, vtg1, C-type lectin, hsd17b1, cyp19a1a, cyp17a1, and rdh12 that are involved in ovarian development were regulated. Our results provide new insights and reveal potential regulatory genes and pathways involved in the ovarian development of grass carp under short-term water velocity stimulation, which may be beneficial when devising further ecological regulation strategies.
Collapse
Affiliation(s)
- Tingting Shu
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
| | - Yan Chen
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
- State Key Laboratory for Cellular Stress Biology, Innovation Centre for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Kan Xiao
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
| | - Hongtao Huang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
| | - Jingyi Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhaoxi Yu
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
| | - Wei Jiang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
| | - Jing Yang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
| |
Collapse
|
3
|
Gu K, Zhang Y, Zhong Y, Kan Y, Jawad M, Gui L, Ren M, Xu G, Liu D, Li M. Establishment of a Coilia nasus Spermatogonial Stem Cell Line Capable of Spermatogenesis In Vitro. BIOLOGY 2023; 12:1175. [PMID: 37759575 PMCID: PMC10526059 DOI: 10.3390/biology12091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023]
Abstract
The process by which spermatogonial stem cells (SSCs) continuously go through mitosis, meiosis, and differentiation to produce gametes that transmit genetic information is known as spermatogenesis. Recapitulation of spermatogenesis in vitro is hindered by the challenge of collecting spermatogonial stem cells under long-term in vitro culture conditions. Coilia nasus is a commercially valuable anadromous migrant fish found in the Yangtze River in China. In the past few decades, exploitation and a deteriorating ecological environment have nearly caused the extinction of C. nasus's natural resources. In the present study, we established a stable spermatogonial stem cell line (CnSSC) from the gonadal tissue of the endangered species C. nasus. The cell line continued to proliferate and maintain stable cell morphology, a normal diploid karyotype, and gene expression patterns after more than one year of cell culture (>80 passages). Additionally, CnSSC cells could successfully differentiate into sperm cells through a coculture system. Therefore, the establishment of endangered species spermatogonial stem cell lines is a model for studying spermatogenesis in vitro and a feasible way to preserve germplasm resources.
Collapse
Affiliation(s)
- Kaiyan Gu
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (K.G.); (Y.Z.); (Y.Z.); (Y.K.); (M.J.); (L.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Ya Zhang
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (K.G.); (Y.Z.); (Y.Z.); (Y.K.); (M.J.); (L.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Ying Zhong
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (K.G.); (Y.Z.); (Y.Z.); (Y.K.); (M.J.); (L.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangzhou 511400, China
| | - Yuting Kan
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (K.G.); (Y.Z.); (Y.Z.); (Y.K.); (M.J.); (L.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Muhammad Jawad
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (K.G.); (Y.Z.); (Y.Z.); (Y.K.); (M.J.); (L.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (K.G.); (Y.Z.); (Y.Z.); (Y.K.); (M.J.); (L.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mingchun Ren
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (M.R.); (G.X.)
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (M.R.); (G.X.)
| | - Dong Liu
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (K.G.); (Y.Z.); (Y.Z.); (Y.K.); (M.J.); (L.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyou Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (K.G.); (Y.Z.); (Y.Z.); (Y.K.); (M.J.); (L.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
4
|
Fan S, Li X, Lin S, Li Y, Ma H, Zhang Z, Qin Z. Screening and Identification of Transcription Factors Potentially Regulating Foxl2 Expression in Chlamys farreri Ovary. BIOLOGY 2022; 11:biology11010113. [PMID: 35053111 PMCID: PMC8772818 DOI: 10.3390/biology11010113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 04/09/2023]
Abstract
Foxl2 is an evolutionarily conserved female sex gene, which is specifically expressed in the ovary and mainly involved in oogenesis and ovarian function maintenance. However, little is known about the mechanism that regulates Foxl2 specific expression during the ovary development. In the present study, we constructed the gonadal yeast one-hybrid (Y1H) library of Chlamysfarreri with ovaries and testes at different developmental stages using the Gateway technology. The library capacity was more than 1.36 × 107 CFU, and the length of the inserted fragment was 0.75 Kb~2 Kb, which fully met the demand of yeast library screening. The highly transcriptional activity promoter sequence of C. farreri Foxl2 (Cf-Foxl2) was determined at -1000~-616 bp by dual-luciferase reporter (DLR) assay and was used as bait to screen possible transcription factors from the Y1H library. Eleven candidate factors, including five unannotated factors, were selected based on Y1H as well as their expressional differences between ovaries and testes and were verified for the first time to be involved in the transcriptional regulation of Cf-Foxl2 by RT-qPCR and DLR. Our findings provided valuable data for further studying the specific regulation mechanism of Foxl2 in the ovary.
Collapse
Affiliation(s)
- Shutong Fan
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
| | - Xixi Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
| | - Siyu Lin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
| | - Yunpeng Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Huixin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
- Correspondence: (Z.Z.); (Z.Q.)
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.F.); (X.L.); (S.L.); (Y.L.); (H.M.)
- Correspondence: (Z.Z.); (Z.Q.)
| |
Collapse
|
5
|
Evolutionarily conserved boule and dazl identify germ cells of Coilia nasus. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Molecular identification and expression analysis of foxl2 and sox9b in Oryzias celebensis. AQUACULTURE AND FISHERIES 2020. [DOI: 10.1016/j.aaf.2020.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Transcriptome analysis of the brain provides insights into the regulatory mechanism for Coilia nasus migration. BMC Genomics 2020; 21:410. [PMID: 32552858 PMCID: PMC7302372 DOI: 10.1186/s12864-020-06816-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/09/2020] [Indexed: 11/10/2022] Open
Abstract
Background Coilia nasus (C. nasus) is an important anadromous fish species that resides in the Yangtze River of China, and has high ecological and economical value. However, wild resources have suffered from a serious reduction in population, attributed to the over-construction of water conservancy projects, overfishing, and environmental pollution. The Ministry of Agriculture and Rural Affairs of the People’s Republic of China has issued a notice banning the commercial fishing of wild C. nasus in the Yangtze River. Wild C. nasus populations urgently need to recover. A better understanding of C. nasus migration patterns is necessary to maximize the efficiency of conservation efforts. Juvenile C. nasus experience a simultaneous effect of increasing salinity and cold stress during seaward migration, and the brain plays a comprehensive regulatory role during this process. Therefore, to explore the early seaward migration regulation mechanism of juvenile C. nasus, we performed a comparative transcriptome analysis on the brain of juvenile C. nasus under salinity and cold stress simultaneously. Results Relevant neurotransmitters, receptors, and regulatory proteins from three categories of regulatory pathway play synergistic regulatory roles during the migration process: neuronal signaling, the sensory system, and environmental adaptation. The significant differential expression of growth-related hormones, thyroid receptors, haptoglobin, and prolactin receptors was similar to the results of relevant research on salmonids and steelhead trout. Conclusions This study revealed a regulatory network that the brain of juvenile C. nasus constructs during migration, thereby providing basic knowledge on further studies could build on. This study also revealed key regulatory genes similar to salmonids and steelhead trout, thus, this study will lay a theoretical foundation for further study on migration regulation mechanism of anadromous fish species.
Collapse
|