1
|
Das D, Mawlong GT, Sarki YN, Singh AK, Chikkaputtaiah C, Boruah HPD. Transcriptome analysis of crude oil degrading Pseudomonas aeruginosa strains for identification of potential genes involved in crude oil degradation. Gene 2020; 755:144909. [PMID: 32569720 DOI: 10.1016/j.gene.2020.144909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/27/2022]
Abstract
In the microbial world, bacteria are the most effective agents in petroleum hydrocarbons (PHs) degradation, utilization/mineralization and they serve as essential degraders of crude oil contaminated environment. Some genes and traits are involved in the hydrocarbon utilization process for which transcriptome analyses are important to identify differentially expressed genes (DEGs) among different conditions, leading to a new understanding of genes or pathways associated with crude oil degradation. In this work, three crude oil utilizing Pseudomonas aeruginosa strains designated as N002, TP16 and J001 subjected to transcriptome analyses revealed a total of 81, 269 and 137 significant DEGs. Among them are 80 up-regulated genes and one downregulated gene of N002, 121 up- regulated and 148 down-regulated genes of TP16, 97 up-regulated and 40 down-regulated genes of J001 which are involved in various metabolic pathways. TP16 strain has shown more number of DEGs upon crude oil treatment in comparison to the other two strains. Through quantitative real time polymerase chain reaction (qRT-PCR), the selected DEGs of each strain from transcriptome data were substantiated. The results have shown that the up- regulated and down-regulated genes observed by qRT-PCR were consistent with transcriptome data. Taken together, our transcriptome results have revealed that TP16 is a potential P. aeruginosa strain for functional analysis of identified potential DEGs involved in crude oil degradation.
Collapse
Affiliation(s)
- Dhrubajyoti Das
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Gabriella T Mawlong
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Yogita N Sarki
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Innovative and Scientific Research (AcSIR), CSIR-NEIST, Jorhat 785006, Assam, India
| | - Anil Kumar Singh
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Innovative and Scientific Research (AcSIR), CSIR-NEIST, Jorhat 785006, Assam, India
| | - Channakeshavaiah Chikkaputtaiah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Innovative and Scientific Research (AcSIR), CSIR-NEIST, Jorhat 785006, Assam, India
| | - Hari Prasanna Deka Boruah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Innovative and Scientific Research (AcSIR), CSIR-NEIST, Jorhat 785006, Assam, India.
| |
Collapse
|