1
|
Ahting S, Nährlich L, Held I, Henn C, Krill A, Landwehr K, Meister J, Nährig S, Nolde A, Remke K, Ruppel R, Sauer-Heilborn A, Schebek M, Schopper G, Schulte-Hubbert B, Schwarz C, Smaczny C, Wege S, Hentschel J. Every CFTR variant counts - Target-capture based next-generation-sequencing for molecular diagnosis in the German CF Registry. J Cyst Fibros 2024; 23:774-781. [PMID: 37867076 DOI: 10.1016/j.jcf.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND In times of genotype guided therapy options, a total of 3.2 % of people with CF (pwCF) in the German CF Registry[1] only have one or no CFTR-variant detected after genetic analysis. Additionally, genetic data in the Registry can be documented as free text and can therefore be prone to error. In order to allow the greatest possible amount of pwCF access to modern therapies, we conducted a re-evaluation of free text entries and established a custom-whole-CFTR-locus NGS-approach for all pwCF who remained without genetic confirmation afterwards. METHODS To this end, we assembled 731 free text variants of 655 pwCF in the German CF Registry. All variants were evaluated using ClinVar, HGMD and CFTR1/2, corrected in the Registries' database and uploaded to ClinVar. PwCF whose diagnosis remained uncertain as well as additional pwCF or pwCFTR-RD that were assembled through a nationwide call for testing of unclear cases were offered genetic analysis. Samples were analysed using a target-capture based NGS-custom-design-panel covering the entire CFTR-locus. RESULTS Evaluation of free text variants led to the discovery of 43 variants not formerly reported in the context of CF. The Registries' dropdown list was extended by 497 variants and over 500 pwCF were provided with their most up-to-date genotype. Samples of 47 pwCF/pwCFTR-RD were sequenced via NGS with an overall success rate of 61.7 %, resulting in implementation of entire CFTR-genotyping into routine diagnostics. CONCLUSION Entire CFTR-genotyping can greatly increase the genetic diagnostic rate of pwCF/pwCFTR-RD and should be considered after inconspicuous CFTR screening panels in CFTR-diagnostics.
Collapse
Affiliation(s)
- Simone Ahting
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany.
| | - Lutz Nährlich
- Department of Pediatrics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Inka Held
- Pediatric Practice Friesenweg, Cystic Fibrosis Center Altona, Hamburg, Germany
| | - Constance Henn
- Division of pediatric Pulmonology and Allergology, Hospital for children and adolescents, University Medical Center Leipzig, Leipzig, Germany
| | - Angelika Krill
- Division of Pneumology, University Medical Center Homburg, Homburg/Saar, Germany
| | - Kerstin Landwehr
- Division of Allergology and Pediatric Pneumology, University Children's Hospital Bethel, University Medical Center Ostwestfalen-Lippe, Bielefeld, Germany
| | - Jochen Meister
- Division of Pneumology, Allergology and Psychotherapy, Children's Hospital, Helios Hospital Aue, Aue, Germany
| | - Susanne Nährig
- Cystic Fibrosis Center for Adults, Med. Klinik V, University Hospital LMU, Munich, Germany
| | - Anna Nolde
- Division of Pneumology, II. Department of Medicine and University Transplant Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Remke
- Department for General Paediatrics, Neonatology and Paediatric Cardiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Renate Ruppel
- University Children's Hospital, University Medical Center Erlangen, Erlangen, Germany
| | | | - Martin Schebek
- Division of Pediatric Pneumology, Center for Pediatric and Women's Medicine Kassel, Kassel, Germany
| | - Gudrun Schopper
- University Children's Hospital Schwabing, Technical University of Munich, Munich, Germany
| | - Bernhard Schulte-Hubbert
- Department of medical clinic I, Medical Center Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Carsten Schwarz
- Department Medicine, HMU-Health and Medical University Potsdam and Director CF Center Westbrandenburg, Division Cystic Fibrosis, Clinic Westbrandenburg, Potsdam, Germany
| | - Christina Smaczny
- Christiane Herzog CF-centre Frankfurt/Main, University Medical Center Frankfurt, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Sabine Wege
- Cystic Fibrosis Center, Thoraxklinik Heidelberg, University Medical Center Heidelberg, Heidelberg, Germany
| | - Julia Hentschel
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Wang M, Zhou J, Long R, Mao R, Gao L, Wang X, Chen Y, Jin L, Zhu L. An overview of CFTR mutation profiles and assisted reproductive technology outcomes in Chinese patients with congenital obstructive azoospermia. J Assist Reprod Genet 2024; 41:505-513. [PMID: 38114870 PMCID: PMC10894795 DOI: 10.1007/s10815-023-03004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
PURPOSE The cystic fibrosis transmembrane conductance regulator (CFTR) is the most common causative gene attributed to congenital obstructive azoospermia (OA). The aim of this study was to conduct an epidemiological survey of congenital OA patients, to screen for CFTR mutations, and to follow their pregnancy outcomes in assisted reproductive technology (ART). METHODS This cohort study enrolled congenital OA patients undergoing ART and whole-exome sequencing from January 2018 to September 2023. Semen parameters, sex hormones, and seminal plasma biochemistry were evaluated. CFTR mutations identified in OA patients were analyzed. In addition, the laboratory outcomes, clinical outcomes, and neonatal outcomes were compared between OA patients carrying two CFTR mutations and the others after surgical sperm extraction-intracytoplasmic sperm injection (ICSI) treatment. RESULTS A total of 76 patients with congenital OA were enrolled. CFTR mutations were identified in 35 (46.1%) congenital OA patients. A total of 60 CFTR mutation sites of 27 types were identified, and 10 of them were novel. The average frequency was 1.71 (60/35) per person. The most common mutation was c.1210-11T > G (25%, 15/60). After ICSI treatment, there were no statistically significant differences in laboratory outcomes, clinical outcomes, and neonatal outcomes between OA patients carrying two CFTR mutations (n = 25) and other OA patients (n = 51). CONCLUSION Apart from the IVS9-5T mutation, the genetic mutation pattern of CFTR in Chinese OA patients is heterogeneous, which is significantly different from that of Caucasians. Although carrying two CFTR mutations or not had no effect on the pregnancy outcomes in OA patients after ICSI, genetic counseling is still recommended for such patients.
Collapse
Affiliation(s)
- Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Juepu Zhou
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Long
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruolin Mao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Limin Gao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiangfei Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yinwei Chen
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Olivença DV, Davis JD, Kumbale CM, Zhao CY, Brown SP, McCarty NA, Voit EO. Mathematical models of cystic fibrosis as a systemic disease. WIREs Mech Dis 2023; 15:e1625. [PMID: 37544654 PMCID: PMC10843793 DOI: 10.1002/wsbm.1625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
Cystic fibrosis (CF) is widely known as a disease of the lung, even though it is in truth a systemic disease, whose symptoms typically manifest in gastrointestinal dysfunction first. CF ultimately impairs not only the pancreas and intestine but also the lungs, gonads, liver, kidneys, bones, and the cardiovascular system. It is caused by one of several mutations in the gene of the epithelial ion channel protein CFTR. Intense research and improved antimicrobial treatments during the past eight decades have steadily increased the predicted life expectancy of a person with CF (pwCF) from a few weeks to over 50 years. Moreover, several drugs ameliorating the sequelae of the disease have become available in recent years, and notable treatments of the root cause of the disease have recently generated substantial improvements in health for some but not all pwCF. Yet, numerous fundamental questions remain unanswered. Complicating CF, for instance in the lung, is the fact that the associated insufficient chloride secretion typically perturbs the electrochemical balance across epithelia and, in the airways, leads to the accumulation of thick, viscous mucus and mucus plaques that cannot be cleared effectively and provide a rich breeding ground for a spectrum of bacterial and fungal communities. The subsequent infections often become chronic and respond poorly to antibiotic treatments, with outcomes sometimes only weakly correlated with the drug susceptibility of the target pathogen. Furthermore, in contrast to rapidly resolved acute infections with a single target pathogen, chronic infections commonly involve multi-species bacterial communities, called "infection microbiomes," that develop their own ecological and evolutionary dynamics. It is presently impossible to devise mathematical models of CF in its entirety, but it is feasible to design models for many of the distinct drivers of the disease. Building upon these growing yet isolated modeling efforts, we discuss in the following the feasibility of a multi-scale modeling framework, known as template-and-anchor modeling, that allows the gradual integration of refined sub-models with different granularity. The article first reviews the most important biomedical aspects of CF and subsequently describes mathematical modeling approaches that already exist or have the potential to deepen our understanding of the multitude aspects of the disease and their interrelationships. The conceptual ideas behind the approaches proposed here do not only pertain to CF but are translatable to other systemic diseases. This article is categorized under: Congenital Diseases > Computational Models.
Collapse
Affiliation(s)
- Daniel V. Olivença
- Center for Engineering Innovation, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, USA
| | - Jacob D. Davis
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia
| | - Carla M. Kumbale
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia
| | - Conan Y. Zhao
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Samuel P. Brown
- Department of Biological Sciences, Georgia Tech and Emory University, Atlanta, Georgia
| | - Nael A. McCarty
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Eberhard O. Voit
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia
| |
Collapse
|
4
|
Cai Z, Li H. Congenital Bilateral Absence of the Vas Deferens. Front Genet 2022; 13:775123. [PMID: 35222530 PMCID: PMC8873976 DOI: 10.3389/fgene.2022.775123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/19/2022] [Indexed: 01/23/2023] Open
Abstract
Congenital bilateral absence of the vas deferens (CBAVD) is clinically characterized by the absence of the bilateral vas deferens; the main clinical manifestation is infertility, accounting for 1–2% of male infertility cases. CBAVD may be accompanied by congenital abnormalities in the urogenital system and cystic fibrosis (CF)-related clinical manifestations. CBAVD can develop as a mild manifestation of CF or can be isolated. The main pathogenic mechanism of CBAVD is gene mutation, and CBAVD and CF have a common genetic mutation background. CFTR mutation is the main pathogenic cause of CBAVD and CF, and ADGRG2 mutation is the second most common cause. Although lack of the vas deferens in CBAVD patients causes infertility due to the inability to release sperm, the testes of CBAVD patients have spermatogenic function. Therefore, CBAVD patients can achieve fertility through sperm retrieval surgery and assisted reproductive technology (ART). However, gene mutations in CBAVD patients can have an impact on the ART outcome, and there is a risk of passing on gene mutations to offspring. For CBAVD patients and their spouses, performing genetic counseling (which currently refers mainly to CFTR mutation screening) helps to reduce the risks of genetic mutations being passed on to offspring and of offspring having CF with concomitant CBAVD.
Collapse
|
5
|
Li Q, Shen Y, Zhao LJ, Wang JB, Huang X. Mutations in CFTR genes are associated with oligoasthenospermia in infertile men undergoing IVF. Andrologia 2021; 54:e14355. [PMID: 34931337 DOI: 10.1111/and.14355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation has been clearly defined in congenital absence of the vas deferens (CAVD), which is an important cause of obstructive azoospermia. However, the association between oligoasthenospermia and CFTR gene mutation remains controversial. To confirm this issue, 151 infertile Chinese men were screened for CFTR mutation by NGS approach, including 18 CAVD patients, 72 patients with severe oligoasthenospermia and 61 controls with normal sperm parameters. Frequency of mutation in exons of CFTR gene were 66.7% in CAVD patients (12/18) (p < 0.001) and 8.33% in severe oligoasthenospermic patients (6/72) (p < 0.05), both of which were significantly more frequent than that in the controls (0/61). In terms of introns mutation of CFTR gene, there was no significant difference in frequency of 5T between oligoasthenospermic men (5/144, 3.47%) and the controls (4/122, 3.28%) (p = 0.645). In addition, 6 novel mutations in exons of CFTR gene in this study (c.3736A>G, c.635T>G, c.482delA, c.1858C>T, c.2042A>T, c.1586A>C) have not been reported in the Cystic Fibrosis Mutation Database before. Thus, our study provides evidence that CFTR gene mutation may be the aetiology of severe oligoasthenospermia other than CAVD. It may be necessary to screen for CFTR mutations in men with severe oligoasthenospermia before receiving assisted reproductive technology.
Collapse
Affiliation(s)
- Qiang Li
- Center of Reproductive Medicine, Shanxi Women and Children Health Hospital, Taiyuan, China
| | - Yan Shen
- Center of Reproductive Medicine, Shanxi Women and Children Health Hospital, Taiyuan, China
| | - Li Jiang Zhao
- Center of Reproductive Medicine, Shanxi Women and Children Health Hospital, Taiyuan, China
| | - Jin Bao Wang
- Center of Reproductive Medicine, Shanxi Women and Children Health Hospital, Taiyuan, China
| | - Xiang Huang
- Center of Reproductive Medicine, Shanxi Women and Children Health Hospital, Taiyuan, China
| |
Collapse
|
6
|
Chen T, Belladelli F, Del Giudice F, Eisenberg ML. Male fertility as a marker for health. Reprod Biomed Online 2021; 44:131-144. [PMID: 34848151 DOI: 10.1016/j.rbmo.2021.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/05/2023]
Abstract
Male reproduction is a complex biological process, and male factor infertility is increasingly recognized as a biomarker for overall male health. Emerging data suggest associations between male reproduction and medical disease (genetic, infectious, chronic comorbid conditions), psychological disease, environmental exposures, dietary habits, medications and substances of abuse, and even socioeconomic factors. There is also evidence that a diagnosis of male fertility is associated with future disease risk including cancer, metabolic disease and mortality. As such, there is a growing view that the male fertility evaluation is an opportunity to improve a man's health beyond his immediate reproductive goals, and also highlights the necessity of a multidisciplinary approach.
Collapse
Affiliation(s)
- Tony Chen
- Center for Academic Medicine, Stanford University School of Medicine, Palo Alto CA, USA.
| | | | | | - Michael L Eisenberg
- Center for Academic Medicine, Stanford University School of Medicine, Palo Alto CA, USA
| |
Collapse
|
7
|
Genetics of Azoospermia. Int J Mol Sci 2021; 22:ijms22063264. [PMID: 33806855 PMCID: PMC8004677 DOI: 10.3390/ijms22063264] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Azoospermia affects 1% of men, and it can be due to: (i) hypothalamic-pituitary dysfunction, (ii) primary quantitative spermatogenic disturbances, (iii) urogenital duct obstruction. Known genetic factors contribute to all these categories, and genetic testing is part of the routine diagnostic workup of azoospermic men. The diagnostic yield of genetic tests in azoospermia is different in the different etiological categories, with the highest in Congenital Bilateral Absence of Vas Deferens (90%) and the lowest in Non-Obstructive Azoospermia (NOA) due to primary testicular failure (~30%). Whole-Exome Sequencing allowed the discovery of an increasing number of monogenic defects of NOA with a current list of 38 candidate genes. These genes are of potential clinical relevance for future gene panel-based screening. We classified these genes according to the associated-testicular histology underlying the NOA phenotype. The validation and the discovery of novel NOA genes will radically improve patient management. Interestingly, approximately 37% of candidate genes are shared in human male and female gonadal failure, implying that genetic counselling should be extended also to female family members of NOA patients.
Collapse
|
8
|
Wong R, Gu K, Ko Y, Patel P. Congenital absence of the vas deferens: Cystic fibrosis transmembrane regulatory gene mutations. Best Pract Res Clin Endocrinol Metab 2020; 34:101476. [PMID: 33353780 DOI: 10.1016/j.beem.2020.101476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Congenital absence of the vas deferens (CAVD) is a rare genetic condition first discovered in the mid-18th century related to mutations in the cystic fibrosis transmembrane regulatory genes. The condition is typically found during work-up of male infertility, and the majority of cases can be diagnosed with complete history and physical examination and pertinent investigations. The condition can be separated into three subcategories, and genetic advances have led to a much better understanding behind the disease, its pathogenesis, and options for treatment. In this review, we discuss the genetics, pathogenesis, embryology, and diagnosis of treatment of CAVD. Future work in this area likely will aim to better understand the epigenetic factors that influence the development of the condition in order to identify potential upstream therapeutic targets.
Collapse
Affiliation(s)
- Rachel Wong
- Section of Urology, Department of Surgery, University of Manitoba, Winnipeg, Canada.
| | - Kaien Gu
- Department of Medicine, University of Manitoba, Winnipeg, Canada.
| | - Yool Ko
- Faculty of Science, Western University, London, Canada.
| | - Premal Patel
- Section of Urology, Department of Surgery, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
9
|
Cui X, Wu X, Li Q, Jing X. Mutations of the cystic fibrosis transmembrane conductance regulator gene in males with congenital bilateral absence of the vas deferens: Reproductive implications and genetic counseling (Review). Mol Med Rep 2020; 22:3587-3596. [PMID: 33000223 PMCID: PMC7533508 DOI: 10.3892/mmr.2020.11456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/21/2020] [Indexed: 11/05/2022] Open
Abstract
Congenital bilateral absence of the vas deferens (CBAVD) is predominantly caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CBAVD accounts for 2–6% of male infertility cases and up to 25% of cases of obstructive azoospermia. With the use of pre-implantation genetic diagnosis, testicular or epididymal sperm aspiration, intracytoplasmic sperm injection and in vitro fertilization, patients affected by CBAVD are able to have children who do not carry CFTR gene mutations, thereby preventing disease. Therefore, genetic counseling should be provided to couples receiving assisted reproductive techniques to discuss the impact of CFTR gene mutations on reproductive health. In the present article, the current literature concerning the CFTR gene and its association with CBAVD is reviewed.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Xueqing Wu
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Qiang Li
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Province People's Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
10
|
Zhang T, Tian X, Xu KF. Cystic fibrosis: a rare disease emerging in China. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1082-1084. [PMID: 32103413 DOI: 10.1007/s11427-020-1620-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Tengyue Zhang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xinlun Tian
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Kai-Feng Xu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
11
|
Kasman AM, Del Giudice F, Eisenberg ML. New insights to guide patient care: the bidirectional relationship between male infertility and male health. Fertil Steril 2020; 113:469-477. [PMID: 32089256 DOI: 10.1016/j.fertnstert.2020.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
Male reproduction is a complex process, and numerous medical conditions have the potential to alter spermatogenesis. In addition, male factor infertility may be a biomarker for future health. In the present review, we discuss the current literature regarding the association between systemic diseases and fertility, which may impact clinical outcomes or semen parameters. A number of conditions that have systemic consequences were identified, including genetic (e.g., cystic fibrosis, DNA mismatch repair alterations), obesity, psychological stress, exogenous testosterone, and a variety of common medications. As such, the infertility evaluation may offer an opportunity for health counseling beyond the discussion of reproductive goals. Moreover, male infertility has been suggested as a marker of future health, given that poor semen parameters and a diagnosis of male infertility are associated with an increased risk of hypogonadism, cardiometabolic disease, cancer, and even mortality. Therefore, male fertility requires multidisciplinary expertise for evaluation, treatment, and counseling.
Collapse
Affiliation(s)
- Alex M Kasman
- Department of Urology, School of Medicine, Stanford University, Stanford, California
| | - Francesco Del Giudice
- Department of Maternal-Infant and Urological Sciences, "Sapienza" Rome University, Policlinico Umberto I Hospital, Rome, Italy
| | - Michael L Eisenberg
- Department of Urology, School of Medicine, Stanford University, Stanford, California; Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, California.
| |
Collapse
|
12
|
Bieth E, Hamdi SM, Mieusset R. Genetics of the congenital absence of the vas deferens. Hum Genet 2020; 140:59-76. [PMID: 32025909 PMCID: PMC7864840 DOI: 10.1007/s00439-020-02122-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/28/2020] [Indexed: 01/19/2023]
Abstract
Congenital absence of the vas deferens (CAVD) may have various clinical presentations depending on whether it is bilateral (CBAVD) or unilateral (CUAVD), complete or partial, and associated or not with other abnormalities of the male urogenital tract. CBAVD is usually discovered in adult men either during the systematic assessment of cystic fibrosis or other CFTR-related conditions, or during the exploration of isolated infertility with obstructive azoospermia. The prevalence of CAVDs in men is reported to be approximately 0.1%. However, this figure is probably underestimated, because unilateral forms of CAVD in asymptomatic fertile men are not usually diagnosed. The diagnosis of CAVDs is based on clinical, ultrasound, and sperm examinations. The majority of subjects with CAVD carry at least one cystic fibrosis-causing mutation that warrants CFTR testing and in case of a positive result, genetic counseling prior to conception. Approximately 2% of the cases of CAVD are hemizygous for a loss-of-function mutation in the ADGRG2 gene that may cause a familial form of X-linked infertility. However, despite this recent finding, 10–20% of CBAVDs and 60–70% of CUAVDs remain without a genetic diagnosis. An important proportion of these unexplained CAVDs coexist with a solitary kidney suggesting an early organogenesis disorder (Wolffian duct), unlike CAVDs related to CFTR or ADGRG2 mutations, which might be the result of progressive degeneration that begins later in fetal life and probably continues after birth. How the dysfunction of CFTR, ADGRG2, or other genes such as SLC29A3 leads to this involution is the subject of various pathophysiological hypotheses that are discussed in this review.
Collapse
Affiliation(s)
- Eric Bieth
- Service de Génétique Médicale, Hôpital Purpan, CHU, 31059, Toulouse, France.
| | - Safouane M Hamdi
- Service de Biochimie, Institut Fédératif de Biologie, CHU, 31059, Toulouse, France.,EA3694 (Groupe de Recherche en Fertilité Humaine), Université Toulouse III, 31059, Toulouse, France
| | - Roger Mieusset
- EA3694 (Groupe de Recherche en Fertilité Humaine), Université Toulouse III, 31059, Toulouse, France.,Département d'Andrologie (Groupe Activité Médecine de la Reproduction), CHU, 31059, Toulouse, France
| |
Collapse
|