1
|
Wei YL, Fan XJ, Lin XC, Zhang HT, Huang YL, Wang XR. Expression pattern and functional analysis of kinesin-14 KIFC1 in spermatogenesis of Macaca mulatta. Gene 2024; 933:148949. [PMID: 39278374 DOI: 10.1016/j.gene.2024.148949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/15/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
C-terminal kinesin motor KIFC1 is increasingly concerned with an essential role in germ cell development. During the spermatogenesis of mice, rats, and crustaceans, KIFC1 functions in regulating meiotic chromosome separation, acrosome vesicle transportation, and nuclear morphology maintenance. The expression pattern of KIFC1 is conservatively concentrated at the acrosome and nucleus of haploid sperm cells. However, whether KIFC1 has similar functions in non-human primates remains unknown. In this study, we constructed the testis-specific cDNA library and cloned different transcripts of KIFC1 based on the genomic sequence. New variants of KIFC1 were identified, and showed different functional domains from the predicted isoforms. The spatio-temporal expression of KIFC1 proteins in seminiferous tubules of rhesus monkeys showed an obvious nuclear localization, specifically expressed in the spermatocytes and early haploid spermatids. The transcripts of KIFC1 also exhibited considerable expression in the nucleus of rhesus LLC-MK2 cells. Besides, we demonstrated that KIFC1 located at the acrosome and microtubule flagella of the mature sperm, and KIFC1 inhibition resulted in sperm tail deformation as well as increased the instability of head-to-tail connection. In summary, this study filled a gap in the reproductive research of the KIFC1 gene in non-human primates.
Collapse
Affiliation(s)
- Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xiao-Jing Fan
- Medical Research Center, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), Fuzhou, Fujian 350011, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xin-Chen Lin
- Medical Research Center, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), Fuzhou, Fujian 350011, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Hai-Tao Zhang
- Medical Research Center, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), Fuzhou, Fujian 350011, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Yi-Lan Huang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China.
| | - Xin-Rui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China.
| |
Collapse
|
2
|
Mo Y, Sun L, Li S, Luo L, Liu H, Huang S, Chen Z, Li G. The mechanism of INO80D involved in chromatin remodeling regulating spermatogenesis in Chinese mitten crab (Eriocheir sinensis). Mol Genet Genomics 2024; 299:83. [PMID: 39212752 DOI: 10.1007/s00438-024-02177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The INO80D protein, a component of the INO80 chromatin remodeling complex, plays a pivotal role in chromatin remodeling, gene expression, and DNA repair within mammalian sperm. In contrast to the condensed nuclear structure of mammalian sperm, Chinese mitten crab, Eriocheir sinensis, exhibits a distinctively decondensed sperm nucleus. The distribution and function of INO80D during the E. sinensis spermatogenesis were previously enigmatic. Our research endeavored to elucidate the distribution and function of INO80D, thereby enhancing our comprehension of sperm decondensation and the process of spermatogenesis in this species. Employing transcriptome sequencing, RT-qPCR, western blot analysis, and immunofluorescence techniques, we observed a pronounced upregulation of INO80D in the adult E. sinensis in comparison to the juvenile. The protein predominantly resides in the cellular nucleus, with high levels in spermatogonia and spermatocytes, less in stage I and III spermatids, and lowest in mature sperm. The results indicated that INO80D is initially instrumental in chromatin decondensation to facilitate gene accessibility and DNA repair during the early phases of spermatogenesis. Its role subsequently shifts to maintaining decondensed chromatin stability and genetic integrity during spermiogenesis. The sustained presence of INO80D during spermiogenesis is essential for the ultimate maturation of the decondensed sperm nucleus, imperative for preserving the unique decondensed state and the protection of genetic material in E. sinensis. Our study concludes that INO80D exerts a multifaceted influence on the spermatogenesis of E. sinensis, impacting chromatin decondensation, genetic integrity, and the regulation of early gene expression. This understanding could potentially improve crab breeding in aquaculture.
Collapse
Affiliation(s)
- Yinyin Mo
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lishuang Sun
- Hainan General Hospital, Haikou, 570311, Hainan, China
- Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Shu Li
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lvjing Luo
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Huiting Liu
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Shi Huang
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Zhengyu Chen
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Genliang Li
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
3
|
Wei YL, Fan XJ, Lin XC, Lin AZ, She ZY, Wang XR. Kinesin-14 KIFC1 promotes acrosome formation and chromatin maturation during mouse spermiogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119555. [PMID: 37524262 DOI: 10.1016/j.bbamcr.2023.119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
KIFC1, a member of kinesin-14 subfamily motors, is essential for meiotic cell division and acrosome formation during spermatogenesis. However, the functions of KIFC1 in the formation and maintenance of the acrosome in male germ cells remain to be elucidated. In this study, we report the structural deformities of acrosomes in the in vivo KIFC1 inhibition mouse models. The proacrosomal vesicles diffuse into the cytoplasm and form atypical acrosomal granules. This phenotype is consistent with globozoospermia patients and probably results from the failure of the Golgi-derived vesicle trafficking and actin filament organization. Moreover, the multinucleated and undifferentiated spermatogenic cells in the epidydimal lumen after KIFC1 inhibition reveal the specific roles of KIFC1 in regulating post-meiotic maturation. Overall, our results uncover KIFC1 as an essential regulator in the trafficking, fusion and maturation of acrosomal vesicles during spermiogenesis.
Collapse
Affiliation(s)
- Ya-Lan Wei
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujian 350013, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xiao-Jing Fan
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujian 350013, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xin-Chen Lin
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujian 350013, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Ai-Zhu Lin
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujian 350013, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China.
| | - Xin-Rui Wang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujian 350013, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China.
| |
Collapse
|
4
|
Tang Y, Ni A, Li S, Sun L, Li G. Expression, localization, and function of P4HB in the spermatogenesis of Chinese mitten crab ( Eriocheir sinensis). PeerJ 2023; 11:e15547. [PMID: 37334119 PMCID: PMC10276555 DOI: 10.7717/peerj.15547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Background The sperm of Chinese mitten crab (Eriocheir sinensis) have special noncondensed nuclei. The formation and stability of the special nuclei are closely related to the correct folding of proteins during spermatogenesis. P4HB plays a key role in protein folding, but its expression and role in the spermatogenesis of E. sinensis are unclear. Objective To investigate the expression and distribution characteristics of P4HB in the spermatogenesis of E. sinensis as well as its possible role. Methods The testis tissues of adult and juvenile E. sinensis were used as materials. We utilized a variety of techniques, including homology modeling, phylogenetic analysis, RT-qPCR, western blotting, and immunofluorescence staining to predict the protein structure and sequence homology of P4HB, analyze its expression in the testis tissues, and localize and semi-quantitatively assess its expression in different male germ cells. Results The sequence of P4HB protein in E. sinensis shared a high similarity of 58.09% with the human protein disulfide isomerase, and the phylogenetic tree analysis indicated that the protein sequence was highly conserved among crustaceans, arthropods, and other animals species. P4HB was found to be expressed in both juvenile and adult E. sinensis testis tissues, with different localization patterns observed all over the developmental stages of male germ cells. It was higher expressed in the spermatogonia, spermatocytes, and stage I spermatids, followed by the mature sperm than in the stage II and III spermatids. The subcellular localization analysis revealed that P4HB was predominantly expressed in the cytoplasm, cell membrane, and extracellular matrix in the spermatogonia, spermatocytes, stage I and stage II spermatids, with some present in specific regions of the nuclei in the spermatogonia. In contrast, P4HB was mainly localized in the nuclei of stage III spermatids and sperm, with little expression observed in the cytoplasm. Conclusion P4HB was expressed in the testis tissues of both adult and juvenile E. sinensis, but the expression and localization were different in male germ cells at various developmental stages. The observed differences in the expression and localization of P4HB may be an essential factor in maintaining the cell morphology and structure of diverse male germ cells in E. sinensis. Additionally, P4HB expressed in the nuclei of spermatogonia, late spermatids, and sperm may play an indispensable role in maintaining the stability of the noncondensed spermatozoal nuclei in E. sinensis.
Collapse
|
5
|
Sheng Y, Wan H, Zhang Z, Li S, Wang Y. A new insight into potential roles of Spfoxl-2 in the testicular development of Scylla paramamosain by RNAi and transcriptome analysis. Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111410. [PMID: 36842753 DOI: 10.1016/j.cbpa.2023.111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
In our previous study, we found that the Spfoxl-2 transcript was highly expressed in gonads and explored its potential target genes in the ovary of Scylla paramamosain. In the current study, we primally analyzed its potential target genes in the testis through RNAi and RNA-Seq technology and compared with that in the ovary. The results showed that a total of 7892 unigenes were differentially expressed after Spfoxl-2 silencing in the testis, including plenty of conserved genes involved in testicular development, such as Dmrt family genes, Sox family genes, Caspase family genes, Cdk family genes, Kinesin family genes, Fox family genes and other genes. Further analysis revealed that these differentially expressed genes (DEGs) were enriched in crucial pathways involved in spermatogenesis, such as DNA replication, Cell cycle, Spliceosome, Homologous recombination, Meiosis and Apoptosis. The comparison results of potential target genes in the ovary and testis reveal 135 common potential target genes, including some genes involved in the immune response. According to our knowledge, the present work was the first to disclose the functions of foxl-2 in the testis of crustacean species using transcriptome analysis. It not only identifies key genes and pathways involved in the testicular development of S. paramamosain, but also reveals a new molecular-level understanding of the function of foxl-2 in testicular development.
Collapse
Affiliation(s)
- Yinzhen Sheng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515003, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China.
| |
Collapse
|
6
|
Tang Y, Sun L, Li S, Liu H, Luo L, Chen Z, Li G. Role of cytoskeleton-related proteins in the acrosome reaction of Eriocheir sinensis spermatozoa. BMC Genom Data 2023; 24:4. [PMID: 36782118 PMCID: PMC9926718 DOI: 10.1186/s12863-023-01112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Cytoskeleton-related proteins are essential for cell shape maintenance and cytoskeleton remodeling. The spermatozoa of Eriocheir sinensis (Chinese mitten crab) have a unique cellular structure, and the mechanism of spermatozoal metamorphosis during the acrosome reaction is not well understood. In this study, the E. sinensis spermatozoa were induced using calcium ionophore A23187 to undergo the acrosome reaction in vitro, and the acrosome-reacting and fresh (non-reacting) spermatozoa were collected separately. The differential expression of cytoskeleton-related protein genes in acrosome-reacting and fresh spermatozoa of E. sinensis was analyzed by whole transcriptome sequencing and bioinformatics analysis, and PPI network and miRNA-mRNA regulation network were constructed to analyze their possible function and regulation mechanism. The results showed that numerous differentially expressed cytoskeleton-related protein genes, miRNAs and lncRNAs were found in acrosome-reacting and fresh spermatozoa of E. sinensis; 27 cytoskeleton-related protein genes were down regulated and 687 miRNAs were up regulated in acrosome-reacting spermatozoa; 147 miRNAs target these 27 cytoskeleton-related protein genes. In the PPI networks, RAC1, BCAR1, RDX, NCKAP1, EPS8, CDC42BPA, LIMK1, ELMO2, GNAI1 and OCRL were identified as hub proteins. These proteins are mainly involved in the regulation of cytoskeleton organization, actin cytoskeleton organization, microtubule skeleton organization and small GTPase-mediated signal transduction and other biological processes, and play roles in pathways such as actin cytoskeletal regulation and axon guidance. miR-9, miR-31 and two novel miRNAs in the miRNA-mRNA regulatory network are the core miRNAs targeting cytoskeleton-related protein genes. miR-9 targets and regulates OBSCN, CDC42BPA, ELMO2, BCAS3, TPR and OCRL; while miR-31 targets and regulates CDC42BPA and TPR. This study provides a theoretical basis for revealing the mechanism of acrosome reaction under the special spermatozoa morphology of E. sinensis.
Collapse
Affiliation(s)
- Yulian Tang
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lishuang Sun
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Shu Li
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Huiting Liu
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lvjing Luo
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Zhengyu Chen
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Genliang Li
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
7
|
Wang X, Liu Q, Li J, Zhou L, Wang T, Zhao N. Dynamic cellular and molecular characteristics of spermatogenesis in the viviparous marine teleost Sebastes schlegelii†. Biol Reprod 2023; 108:338-352. [PMID: 36401879 DOI: 10.1093/biolre/ioac203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/13/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
Spermatogenesis is a dynamic cell developmental process that is essential for reproductive success. Vertebrates utilize a variety of reproductive strategies, including sperm diversity, and internal and external fertilization. Research on the cellular and molecular dynamic changes involved in viviparous teleost spermatogenesis, however, is currently lacking. Here, we combined cytohistology, 10 × genomic single-cell RNA-seq, and transcriptome technology to determine the dynamic development characteristics of the spermatogenesis of Sebastes schlegelii. The expressions of lhcgr (Luteinizing hormone/Choriogonadotropin receptor), fshr (follicle-stimulating hormone receptor), ar (androgen receptor), pgr (progesterone receptor), and cox (cyclo-oxygen-ase), as well as the prostaglandin E and F levels peaked during the maturation period, indicating that they were important for sperm maturation and mating. Fifteen clusters were identified based on the 10 × genomic single-cell results. The cell markers of the sub-cluster were identified by their upregulation; piwil, dazl, and dmrt1 were upregulated and identified as spermatogonium markers, and sycp1/3 and spo11 were identified as spermatocyte markers. For S. schlegelii, the sperm head nucleus was elongated (spherical to streamlined in shape), which is a typical characteristic for sperm involved in internal fertilization. We also identified a series of crucial genes associated with spermiogenesis, such as spata6, spag16, kif20a, trip10, and klf10, while kif2c, kifap3, fez2, and spaca6 were found to be involved in nucleus elongation. The results of this study will enrich our cellular and molecular knowledge of spermatogenesis and spermiogenesis in fish that undergo internal fertilization.
Collapse
Affiliation(s)
- Xueying Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghua Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Zhou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Ning Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Transcriptome analysis of the testes of male chickens with high and low sperm motility. Poult Sci 2022; 101:102183. [PMID: 36215742 PMCID: PMC9554828 DOI: 10.1016/j.psj.2022.102183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
The reproductive performance of chicken breeders has significant economic importance in the poultry industry, and sperm motility is an indicator of reproductive performance. This study performed RNA-seq of the testes of Gushi chicken roosters with high and low sperm motility and identified differentially expressed RNAs involved in sperm motility. RNA-seq analysis showed that 73 and 67 differentially expressed mRNAs were up- and downregulated, and 47 and 56 differentially expressed long non-coding RNAs were up- and downregulated, respectively. The genes related to sperm motility and spermatogenesis included KIFC1, KCNK2, and REC8. Functional enrichment analysis revealed that the pathways related to sperm motility included oxidative phosphorylation and glycine, serine, and threonine metabolism. In addition, the MSTRG.15920.1-REC8-MSTRG.11860.2-VWC2 pathway may regulate sperm motility. This study helped elucidate the molecular genetic mechanism of sperm motility in chicken.
Collapse
|
9
|
Transport of Acrosomal Enzymes by KIFC1 via the Acroframosomal Cytoskeleton during Spermatogenesis in Macrobrachium rosenbergii (Crustacea, Decapoda, Malacostracea). Animals (Basel) 2022; 12:ani12080991. [PMID: 35454238 PMCID: PMC9027553 DOI: 10.3390/ani12080991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary In crustaceans, the sperm have no tail, and spermatogenesis consists only of acrosomal formation and nuclear deformation. The mechanism of acrosome formation during spermatogenesis of Macrobrachium rosenbergii is one of the hot topics in reproductive biology. Many motor proteins are involved in spermatogenesis. KIFC1, as a member of the kinesin family, is one of the motor proteins that our lab has been focusing on. The acrosome contains a large number of acrosomal enzymes for the hydrolysis of the egg envelope. In order to understand how these acrosomal enzymes are transported to the acrosome cap after synthesis, we cloned the KIFC1 and the Acrosin of M. rosenbergii. By detecting the localization of KIFC1 and Acrosin, we found that Mr-KIFC1 may be involved in acrosomal enzyme transport during spermiogenesis of M. rosenbergii. This study is to propose the function of KIFC1 to transport acrosomal enzymes along the acroframosome structure during crustacean spermatogenesis. Abstract The spermatogenesis of crustaceans includes nuclear deformation and acrosome formation. The mechanism of acrosome formation is one focus of reproductive biology. In this study, Macrobrachium rosenbergii was selected as the research object to explore the mechanism of acrosome formation. The acrosome contains a large number of acrosomal enzymes for the hydrolysis of the egg envelope. How these acrosomal enzymes are transported to the acrosomal site after synthesis is the key scientific question of this study. The acroframosome (AFS) structure of caridean sperm has been reported. We hypothesized that acrosomal enzymes may be transported along the AFS framework to the acrosome by motor proteins. To study this hypothesis, we obtained the full-length cDNA sequences of Mr-kifc1 and Mr-Acrosin from the testis of M. rosenbergii. The Mr-kifc1 and Mr-Acrosin mRNA expression levels were highest in testis. We detected the distribution of Mr-KIFC1 and its colocalization with Mr-Acrosin during spermatogenesis by immunofluorescence. The colocalization of Mr-KIFC1 and microtubule indicated that Mr-KIFC1 may participate in sperm acrosome formation and nucleus maturation. The colocalization of Mr-KIFC1 and Mr-Acrosin indicated that Mr-KIFC1 may be involved in Acrosin transport during spermiogenesis of M. rosenbergii. These results suggest that Mr-KIFC1 may be involved in acrosomal enzymes transport during spermiogenesis of M. rosenbergii.
Collapse
|
10
|
Wei YL, Fan XJ, Diao YY, She ZY, Wang XR. Kinesin-14 KIFC1 modulates spindle assembly and chromosome segregation in mouse spermatocytes. Exp Cell Res 2022; 414:113095. [DOI: 10.1016/j.yexcr.2022.113095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
|
11
|
Li D, Yu T, Han J, Xu X, Wu J, Song W, Liu G, Zhu H, Zeng Z. Prognostic Value and Immunological Role of KIFC1 in Hepatocellular Carcinoma. Front Mol Biosci 2022; 8:799651. [PMID: 35111813 PMCID: PMC8802309 DOI: 10.3389/fmolb.2021.799651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022] Open
Abstract
As one of the members of the kinesin family, the role and potential mechanism of kinesin family member C1 (KIFC1) in the development of liver hepatocellular carcinoma (LIHC), especially in the immune infiltration, have not been fully elucidated. In this study, multiple databases and immunohistochemistry were employed to analyze the role and molecular mechanism including the immune infiltration of KIFC1 in LIHC. Generally, KIFC1 mRNA expression was overexpressed in LIHC tissues than normal tissues, and its protein was also highly expressed in the LIHC. KIFC1 mRNA expression was correlated with tumor grade and TNM staging, which was negatively correlated with overall survival and disease-free survival. Moreover, univariable and multivariate Cox analysis revealed that upregulated KIFC1 mRNA is an independent prognostic factor for LIHC. The KIFC1 promoter methylation level was negatively associated with KIFC1 mRNA expression and advanced stages and grade in LIHC. The different methylation sites of KIFC1 had a different effect on the prognosis of LIHC. Specifically, the KIFC1 mRNA expression level showed intense correlation with tumor immunity, such as tumor-infiltrating immune cells and immune scores as well as multiple immune-related genes. Moreover, KIFC1 co-expressed with some immune checkpoints and related to the responses to immune checkpoint blockade (ICB) and chemotherapies. Significant GO analysis showed that genes correlated with KIFC1 served as catalytic activity, acting on DNA, tubulin binding, histone binding, ATPase activity, and protein serine/threonine kinase activity. KEGG pathway analysis showed that these genes related to KIFC1 are mainly enriched in signal pathways such as cell cycle, spliceosome, pyrimidine metabolism, and RNA transport. Conclusively, KIFC1 was upregulated and displayed a prognostic value in LIHC. Moreover, KIFC1 may be involved in the LIHC progression partially through immune evasion and serve as a predictor of ICB therapies and chemotherapies.
Collapse
Affiliation(s)
- Dan Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Yu
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Han
- Department of Infection Control, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Xu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Wu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Song
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Liu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Hua Zhu, ; Zhi Zeng,
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Hua Zhu, ; Zhi Zeng,
| |
Collapse
|
12
|
Expression and functional analysis of cytoplasmic dynein during spermatogenesis in Portunus trituberculatus. Cell Tissue Res 2021; 386:191-203. [PMID: 34477967 DOI: 10.1007/s00441-021-03519-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
The mechanism of acrosome formation in the crab sperm is a hot topic in crustacean reproduction research. Dynein is a motor protein that performs microtubule-dependent retrograde transport and plays an essential role in spermatogenesis. However, whether cytoplasmic dynein participates in acrosome formation in the crab sperm remains poorly understood. In this study, we cloned the cytoplasmic dynein intermediate chain gene (Pt-DIC) from Portunus trituberculatus testis. Pt-DIC is composed of a p150glued-binding domain, a dynein light chain (DLC)-binding domain, and a dynein heavy chain (DHC)-binding domain. The Pt-DIC gene is widely expressed in different tissues, showing the highest expression in the testis, and it is expressed in different stages of spermatid development, indicating important functions in spermatogenesis. We further observed the colocalization of Pt-DIC and Pt-DHC, Pt-DHC and tubulin, and Pt-DHC and GM130, and the results indicated that cytoplasmic dynein may participate in nuclear shaping and acrosome formation via vesicle transport. In addition, we examined the colocalization of Pt-DHC and a mitochondrion (MT) tracker and that of Pt-DHC and prohibitin (PHB). The results indicated that cytoplasmic dynein participated in mitochondrial transport and mitochondrial degradation. Taken together, these results support the hypothesis that cytoplasmic dynein participates in acrosome formation, nuclear shaping, and mitochondrial transport during spermiogenesis in P. trituberculatus. This study will provide valuable guidance for the artificial fertilization and reproduction of P. trituberculatus.
Collapse
|
13
|
Chen MY, Tayyeb A, Wang YF. shrub is required for spermatogenesis of Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21779. [PMID: 33660341 DOI: 10.1002/arch.21779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Shrub (CG8055) encodes the vps32/snf7 protein, a filament-forming subunit of the ESCRT (endosomal sorting complexes required for transport)-III complex involved in inward membrane budding. It was reported that shrub was required for abscission in female germline stem cells. In this study, we showed that the expression level of shrub in the testis was significantly higher than that in the ovary of 1-day-old Drosophila melanogaster, suggesting a role in male reproduction. Then we used nosGal4 driver to knockdown shrub specifically in the fly testis and found that this resulted in a significantly lower paternal effect egg hatch rate relative to the control group. Immunofluorescence staining showed that shrub knockdown in fly testes caused an accumulation of early-stage germ cells and lack of spectrin caps. In the late stages (spermiogenesis), the control testis contained multiple compacted spermatid bundles and individualization complexes (ICs) consisting of actin cones, whereas there were scattered spermatid nuclei and only a few ICs with disorganized actin cones in the shrub knockdown testis. Finally, the control seminal vesicle was full of mature sperms with needle-like heads, but in shrub knockdown testis 75% of seminal vesicles had no mature sperms. We also found that knockdown of shrub in fly testes led to upregulated expression of several cytoskeleton-associated genes, and an accumulation of ubiquitylated proteins. These results suggest that knockdown of shrub in fly testes might damage spermatogenesis by affecting transportability.
Collapse
Affiliation(s)
- Meng-Yan Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology Sciences, School of Life, Central China Normal University, Wuhan, China
| | - Abdulqadir Tayyeb
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology Sciences, School of Life, Central China Normal University, Wuhan, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology Sciences, School of Life, Central China Normal University, Wuhan, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
14
|
Zheng X, Gao X, Wang J, Du C, Hou C, Xie Q, Lou B, Liu F, Zhu J. KIFC1 functions in nuclear reshaping and midpiece formation during the spermatogenesis of small yellow croaker Larimichthys polyactis. Anim Reprod Sci 2021; 226:106702. [PMID: 33581918 DOI: 10.1016/j.anireprosci.2021.106702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022]
Abstract
The C-terminal kinesin motor protein (KIFC1) has essential functions in spermatogenesis. To evaluate molecular mechanisms of KIFC1 during teleost fish spermatogenesis, there was cloning and sequencing the kifc1 cDNA in the testis of Larimichthys polyactis. Quantitative PCR results indicated there were Lp-kifc1 mRNA transcripts in the testes. Results from conducting fluorescence in situ hybridization and immunofluorescence procedures indicated there were trends in relative abundance changes in Lp-kifc1 mRNA transcripts that were associated with abundance of Lp-KIFC1 protein during spermatogenesis. The Lp-KIFC1 protein was detected at all stages of spermatogenesis. There was minimal Lp-KIFC1 in the cytoplasm of spermatogonia, with content being greater and concentrated in the perinuclear region in spermatocytes and during early/mid-stages of development of spermatids. There were large abundances of Lp-KIFC1 in spermatids at the mid-developmental stage. In late-developing spermatids, Lp-KIFC1 content was less and concentrated in the bottom of the nucleus, where the midpiece formed. There was a small Lp-KIFC1 in the midpiece of mature sperm. These findings indicate Lp-KIFC1 may have functions in L. polyactis spermatogenesis. Results from conducting immunofluorescence procedures indicated Lp-KIFC1 was co-localized microtubules and mitochondria throughout spermatogenesis. There were large abundances of Lp-KIFC1 and tubulin in spermatids during the mid-developmental stage, when there is a decrease in size and reshaping of the nucleus. During midpiece formation, there was co-localization of the Lp-KIFC1 and mitochondria in the spermatid perinuclear region to the midpiece. These findings indicate Lp-KIFC1 is involved in nuclear reshaping and midpiece formation during spermatogenesis in L. polyactis.
Collapse
Affiliation(s)
- Xuebin Zheng
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jingqian Wang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chen Du
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Congcong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qingping Xie
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China
| | - Bao Lou
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China
| | - Feng Liu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
15
|
Yang T, Wei BH, Hao SL, Wei YL, Yang WX. Bone morphogenetic protein 2 (BMP2) mediates spermatogenesis in Chinese mitten crab Eriocheir sinensis by regulating kinesin motor KIFC1 expression. Gene 2020; 754:144848. [PMID: 32522697 DOI: 10.1016/j.gene.2020.144848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Abstract
The TGF-beta superfamily is widely involved in cell events such as cell division and differentiation, while bone morphogenetic proteins (BMPs) belong to one of the subgroups. Their functions in crustacean spermatogenesis are still unknown. In this study, we first identified the bone morphogenetic protein 2 (bmp2) from Eriocheir sinensis (E. sinensis) testis. The es-BMP2 shows high expression in E. sinensis testis. We found that es-BMP2 is expressed in spermatids. The successfully knockdown of es-BMP2 through in vivo RNAi are used for functional analysis. Compared with the control group, the proportion of abnormal nuclear cup morphology in mature spermatozoa increased significantly after es-bmp2 RNAi, suggesting that es-BMP2 plays an important role in mature sperm morphogenesis. Immunofluorescence results confirm this finding. In order to study the specific mechanism of es-BMP2 involved in spermiogenesis, we tested kinesin-14 KIFC1, which functions in the nucleus formation of spermatozoa in E. sinensis. The results showed that knockdown of es-BMP2 caused a significant decrease of es-KIFC1 expression. We further performed es-bmp2 knockdown in vitro in primary cultured testis cells. es-KIFC1 expression was significantly reduced after es-bmp2 RNAi. The above results indicate that es-BMP2 participates in maintaining the spermiogenesis of E. sinensis by regulating es-KIFC1 expression.
Collapse
Affiliation(s)
- Tong Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ya-Lan Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|