1
|
Mosca N, Alessio N, Di Paola A, Marrapodi MM, Galderisi U, Russo A, Rossi F, Potenza N. Osteosarcoma in a ceRNET perspective. J Biomed Sci 2024; 31:59. [PMID: 38835012 DOI: 10.1186/s12929-024-01049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Osteosarcoma (OS) is the most prevalent and fatal type of bone tumor. It is characterized by great heterogeneity of genomic aberrations, mutated genes, and cell types contribution, making therapy and patients management particularly challenging. A unifying picture of molecular mechanisms underlying the disease could help to transform those challenges into opportunities.This review deeply explores the occurrence in OS of large-scale RNA regulatory networks, denominated "competing endogenous RNA network" (ceRNET), wherein different RNA biotypes, such as long non-coding RNAs, circular RNAs and mRNAs can functionally interact each other by competitively binding to shared microRNAs. Here, we discuss how the unbalancing of any network component can derail the entire circuit, driving OS onset and progression by impacting on cell proliferation, migration, invasion, tumor growth and metastasis, and even chemotherapeutic resistance, as distilled from many studies. Intriguingly, the aberrant expression of the networks components in OS cells can be triggered also by the surroundings, through cytokines and vesicles, with their bioactive cargo of proteins and non-coding RNAs, highlighting the relevance of tumor microenvironment. A comprehensive picture of RNA regulatory networks underlying OS could pave the way for the development of innovative RNA-targeted and RNA-based therapies and new diagnostic tools, also in the perspective of precision oncology.
Collapse
Affiliation(s)
- Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Di Paola
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
2
|
Chen Y, Chen C, Gao G, Zeng C, Chen Z, Lin G, Yao G, Nian S, Chen X, Weng S, Gu X, Lin C. Identification and validation of N6-methyladenosine (m6A)-related lncRNAs signature for predicting the prognosis of laryngeal carcinoma, especially for smoking patients. Front Genet 2023; 14:1292164. [PMID: 38028627 PMCID: PMC10666777 DOI: 10.3389/fgene.2023.1292164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Laryngeal cancer (LC), a highly fatal tumor in the head and neck region, has been the focus of research in recent years. The study of LC has primarily focused on the role of long non-coding RNAs (lncRNAs) in regulating gene expression, as they have emerged as pivotal factors in this biological process. Additionally, a reversible RNA modification called N6-methyladenosine (m6A) has been observed to have a significant impact on gene expression as well. The purpose of this research is to investigate the impact of m6A-related lncRNAs on the prognosis of laryngeal squamous cell carcinoma (LSCC). Specifically, this investigation analyzed the m6A-related regulators' patterns of expression and mutation, encompassing a total of 15 regulators. Drawing upon the expression levels of prognostic m6A-regulated lncRNAs, two distinct lncRNA clusters were identified. Further analysis revealed differentially expressed lncRNAs between these clusters. In addition to studying the expression of lncRNAs, the researchers also examined the distribution of clinical characteristics and the tumor microenvironment (TME) in relation to the identified lncRNA clusters. This provided valuable insights into potential associations between lncRNA expression patterns and the clinical features of LSCC. Through the establishment of a risk model associated with lncRNAs, we were able to further investigate their clinical features, prognosis, and immune status. Additionally, we conducted a separate analysis of LINC00528, a lncRNA associated with smoking, examining its expression, overall survival time, correlated mRNAs, and conducting enrichment of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), as well as determining the sensitivity of related drugs. RT-qPCR results also indicated an increase in LINC00528 expression among smoking LSCC patients. The findings suggest that a high expression level of LINC00528 in LSCC patients may lead to a more favorable prognosis, providing new insights for the management and treatment of LSCC patients, particularly those with high expression of LINC00528. Overall, this research sheds light on the prognostic impact of m6A-regulated lncRNAs in LSCC. The implications of these findings for the advancement of innovative therapeutic approaches for LSCC patients are noteworthy.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Chenyu Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Gufeng Gao
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Chaojun Zeng
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Zhifeng Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Gongbiao Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Guangnan Yao
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Shenqing Nian
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Xihang Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Simin Weng
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Xi Gu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Chang Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Xu Q, Xu JL, Chen WQ, Xu WX, Song YX, Tang WJ, Xu D, Jiang MP, Tang J. Roles and mechanisms of miR-195-5p in human solid cancers. Biomed Pharmacother 2022; 150:112885. [PMID: 35453003 DOI: 10.1016/j.biopha.2022.112885] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer persists as a worldwide disease that contributes to high morbidity and mortality rates. As a class of non-coding RNA, microRNAs (miRNAs) are one kind of important regulators in cancer and frequently implicated in tumor development and progression. Emerging experiments have suggested that miRNA-195-5p (miR-195-5p) can regulate neoplastic processes in many pathways. For instance, miR-195-5p can not only regulate proliferation, migration and invasion of tumor cells but also promote tumor cell apoptosis. Furthermore, low expression of miR-195-5p could induce drug resistance. Our review focuses on the expression of miR-195-5p in various tumors and elucidates the related mechanisms of which miR-195-5p participates in tumor biology, as well as summarizes the roles of miR-195-5p in tumor progression. We believe that miR-195-5p might have potential utility as a novel diagnostic biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Qi Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jia-Lin Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Wen-Quan Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Wen-Xiu Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Yu-Xin Song
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Wen-Juan Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Di Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Meng-Ping Jiang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jinhai Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
4
|
Chen M, Chen Y, Jiang L. MiR-449b-5p Regulates the Proliferation and Migration of Cervical Cancer Cells by Targeting Forkhead Box Protein P1 (FOXP1). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study intends to assess miR-449b-5p’s effect on cervical cancer (CC) cells and its mechanism. After transfection of miR-449b-5p mimics, inhibitor, si-Foxp1 and negative control, CC cell viability was analyzed by MTT along with analysis of migration and invasion by transwell
and scratch test, and Foxp1 protein level by Western blot. CC cells presented a significantly higher miR-449b-5p level and lower Foxp1 level in relative to normal cervical cells. miR-449b-5p mimic transfection significantly promoted CC cell viability, migration and invasion and decreased Foxp1
expression. However, all the above changes were significantly reversed after treatment with si-Foxp1. In conclusion, miR-449b-5p level is elevated in CC cells and its overexpression promotes the biological behaviors of CC cells possibly through targeting Foxp1, indicating that it might be
a new target for the treatment of CC.
Collapse
Affiliation(s)
- Meili Chen
- Department of Obstetrics, Changyi People’s Hospital, Weifang, Shandong 261300, China
| | - Yu Chen
- Department of Obstetrics, Changyi People’s Hospital, Weifang, Shandong 261300, China
| | - Lijuan Jiang
- Department of Obstetrics, Changyi People’s Hospital, Weifang, Shandong 261300, China
| |
Collapse
|
5
|
The Long Non-Coding RNA SNHG12 as a Mediator of Carboplatin Resistance in Ovarian Cancer via Epigenetic Mechanisms. Cancers (Basel) 2022; 14:cancers14071664. [PMID: 35406435 PMCID: PMC8996842 DOI: 10.3390/cancers14071664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Epithelial ovarian cancer is a lethal malignancy in which recurrence and therapy resistance are the major causes of death. We investigated the transcriptome and DNA methylation profile of ovarian cancer cell lines sensitive and resistant to carboplatin, aiming to identify genes associated with therapy resistance. We focused on long non-coding RNAs (lncRNAs), known as epigenetic regulators of several cellular and biological processes. We found 11 lncRNAs associated with carboplatin resistance, including SNHG12 (small nucleolar RNA host gene 12), also confirmed in an external dataset (The Cancer Genome Atlas). SNHG12 gene silencing increased the sensitivity to carboplatin, giving evidence that this lncRNA contributes to resistance to carboplatin in ovarian cancer cell lines. We also demonstrated that SNHG12 could control the expression of nearby genes probably by altering epigenetic markers and modifying the transcript levels. Abstract Genetic and epigenetic changes contribute to intratumor heterogeneity and chemotherapy resistance in several tumor types. LncRNAs have been implicated, directly or indirectly, in the epigenetic regulation of gene expression. We investigated lncRNAs that potentially mediate carboplatin-resistance of cell subpopulations, influencing the progression of ovarian cancer (OC). Four carboplatin-sensitive OC cell lines (IGROV1, OVCAR3, OVCAR4, and OVCAR5), their derivative resistant cells, and two inherently carboplatin-resistant cell lines (OVCAR8 and Ovc316) were subjected to RNA sequencing and global DNA methylation analysis. Integrative and cross-validation analyses were performed using external (The Cancer Genome Atlas, TCGA dataset, n = 111 OC samples) and internal datasets (n = 39 OC samples) to identify lncRNA candidates. A total of 4255 differentially expressed genes (DEGs) and 14529 differentially methylated CpG positions (DMPs) were identified comparing sensitive and resistant OC cell lines. The comparison of DEGs between OC cell lines and TCGA-OC dataset revealed 570 genes, including 50 lncRNAs, associated with carboplatin resistance. Eleven lncRNAs showed DMPs, including the SNHG12. Knockdown of SNHG12 in Ovc316 and OVCAR8 cells increased their sensitivity to carboplatin. The results suggest that the lncRNA SNHG12 contributes to carboplatin resistance in OC and is a potential therapeutic target. We demonstrated that SNHG12 is functionally related to epigenetic mechanisms.
Collapse
|
6
|
Tao F, Qi L, Liu G. Long intergenic non-protein coding RNA 662 accelerates the progression of gastric cancer through up-regulating centrosomal protein 55 by sponging microRNA-195-5p. Bioengineered 2022; 13:3007-3018. [PMID: 35037833 PMCID: PMC8974125 DOI: 10.1080/21655979.2021.2023978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are important players in regulating diverse human diseases, including cancers. Nonetheless, the function of long intergenic non-protein coding RNA 662 (LINC00662) in gastric cancer (GC) carcinogenesis and progression remains to be delineated. In the present study, LINC00662, microRNA-195-5p (miR-195-5p) and centrosomal protein 55 (CEP55) mRNA expression levels were quantified by qRT-PCR. GC cell proliferation, migration and invasion were analyzed by CCK-8, BrdU and Transwell assays. Besides, dual-luciferase reporter and RNA pull-down assays were conducted for verifying the targeting relationships of LINC00662, miR-195-5p and CEP55. The regulatory functions of LINC00662 and miR-195-5p on CEP55 were examined utilizing Western blot. In this study, it was revealed that LINC00662 expression level was elevated in GC tissues and cells. LINC00662 overexpression facilitated the malignant biological behaviors of GC cells whereas knockdown of LINC00662 worked oppositely. In terms of mechanism, LINC00662 targeted miR-195-5p to modulate CEP55 expression. In conclusion, LINC00662 facilitates the malignant biological behaviors of GC cells via miR-195-5p/CEP55 axis, and therefore, it may be a promising target for GC treatment.
Collapse
Affiliation(s)
- Fei Tao
- Department of Oncology, Qinghai Provincial People's Hospital, Xining, China
| | - Likun Qi
- Department of Gastrointestinal Surgery, Fifth People's Hospital of Qinghai Province, Xining, China
| | - Guoqing Liu
- Department of Oncology, Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
7
|
Yang K, Wang F, Li K, Peng G, Yang H, Xu H, Xiang Y, Sun H. N6-methyladenosine Modification-Related Long Non-Coding RNAs are Potential Biomarkers for Predicting the Prognosis of Patients With Osteosarcoma. Technol Cancer Res Treat 2022; 21:15330338221085354. [PMID: 35422168 PMCID: PMC9019337 DOI: 10.1177/15330338221085354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: The role of N6-methyladenosine (m6A)-related long non-coding RNAs (lncRNAs) in osteosarcoma (OS) has not been fully studied yet. We aimed to identify m6A-related lncRNAs that could act as prognostic biomarkers for OS. Methods: Pearson correlation was performed to identify m6A-related lncRNAs. Univariate and multivariate Cox regression analyses were performed to construct the risk model and assess whether the risk score was an independent prognostic factor for patients with OS. Gene Set Enrichment Analysis (GSEA) was performed to analyze the functions of genes in high-risk and low-risk groups. StarBase and Cytoscape were used to construct a competing endogenous RNA (ceRNA) network based on m6A-related prognostic lncRNA signature. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to analyze the function of genes involved in the ceRNA network. Results: We extracted 122 common lncRNAs from TCGA and Gene Expression Omnibus (GEO) databases. Pearson correlation results revealed 59 significant m6A-related lncRNAs in The Cancer Genome Atlas (TCGA) database, from which 2 were screened to construct a risk signature in TCGA dataset, which was then validated in the GEO dataset. A corresponding risk score was calculated and shown to be an independent prognostic factor for patients with OS. Enrichment analysis indicated that cell proliferation-related biological processes were more common in the high-risk group, while immune-related biological processes were more common in the low-risk group. Moreover, we established a nomogram that had a good ability to predict the overall survival of patients with OS. Additionally, a ceRNA network based on small nucleolar RNA host gene 7 (SNHG7) and small nucleolar RNA host gene 12 (SNHG12) was constructed, with genes that were enriched in hepatocellular carcinoma, gastric cancer, and non-small-cell lung cancer pathways. Conclusion: Our study revealed the prognostic role of m6A-related lncRNAs in OS and identified SNHG7 and SNHG12 as potential biomarkers for predicting the prognosis of patients with OS. These findings have enriched our understanding of the role of m6A modification in the dysregulation of lncRNAs in OS.
Collapse
Affiliation(s)
- Kun Yang
- 74720Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fengyan Wang
- 74720Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,School of Clinical Medicine, 74628Guizhou Medical University, Guiyang, China.,School of Medicine, Soochow University, Suzhou, China
| | - Ke Li
- 56663Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Guoxuan Peng
- School of Clinical Medicine, 74628Guizhou Medical University, Guiyang, China
| | - Hua Yang
- 74720Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Xu
- School of Clinical Medicine, 74628Guizhou Medical University, Guiyang, China
| | - Yang Xiang
- 74720Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Sun
- 74720Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,School of Clinical Medicine, 74628Guizhou Medical University, Guiyang, China
| |
Collapse
|
8
|
Abstract
Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Li S, Liu F, Zheng K, Wang W, Qiu E, Pei Y, Wang S, Zhang J, Zhang X. CircDOCK1 promotes the tumorigenesis and cisplatin resistance of osteogenic sarcoma via the miR-339-3p/IGF1R axis. Mol Cancer 2021; 20:161. [PMID: 34876132 PMCID: PMC8650521 DOI: 10.1186/s12943-021-01453-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological functions in osteogenic sarcoma (OS). Methods Differentially expressed circRNAs in OS cell lines and tissues were identified by circRNA microarray analysis and quantitative real-time PCR (qRT–PCR). To explore the actions of circDOCK1 in vivo and in vitro, circDOCK1 was knocked down or overexpressed. To assess the binding and regulatory associations among miR-339-3p, circDOCK1 and IGF1R, we performed rescue experiments, RNA immunoprecipitation (RIP), RNA pulldown assays and dual-luciferase assays. Moreover, we performed apoptosis assays to reveal the regulatory effects of the circDOCK1/miR-339-3p/IGF1R axis on cisplatin sensitivity. Results CircDOCK1 expression remained stable in the cytoplasm and was higher in OS tissues and cells than in the corresponding controls. Overexpression of circDOCK1 increased oncogenicity in vivo and malignant transformation in vitro. In the U2OS and MG63 cell lines, circDOCK1 modulated tumor progression by regulating IGF1R through sponging of miR-339-3p. Additionally, in the U2OS/DDP and MG63/DDP cell lines, cisplatin sensitivity was regulated by circDOCK1 via the miR-339-3p/IGF1R axis. Conclusions CircDOCK1 can promote progression and regulate cisplatin sensitivity in OS via the miR-339-3p/IGF1R axis. Thus, the circDOCK1/miR-339-3p/IGF1R axis may be a key mechanism and therapeutic target in OS. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01453-0.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China.
| | - Fei Liu
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China
| | - Ke Zheng
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China
| | - Wei Wang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China
| | - Enduo Qiu
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China
| | - Yi Pei
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China
| | - Shuang Wang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China
| | - Jiaming Zhang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China
| | - Xiaojing Zhang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China
| |
Collapse
|
10
|
Jiang W, Zhao W, Ye F, Huang S, Wu Y, Chen H, Zhou R, Fu G. SNHG12 regulates biological behaviors of ox-LDL-induced HA-VSMCs through upregulation of SPRY2 and NUB1. Atherosclerosis 2021; 340:1-11. [PMID: 34847450 DOI: 10.1016/j.atherosclerosis.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Human vascular smooth muscle cells (HA-VSMCs) are an important cell type involved in atherosclerosis. Low density lipoprotein (LDL) is a lipoprotein particle that carries cholesterol into peripheral tissue cells, and oxidized modified LDL (ox-LDL) is a well-known inducer of the atherosclerosis-related phenotype switch in VSMCs, leading to the occurrence of atherosclerosis. Accumulating studies have revealed that long non-coding RNAs (lncRNAs) mediate the effect of ox-LDL on the atherosclerosis-related biological activities of HA-VSMCs, including proliferation, migration, and apoptosis. However, the mechanism of small nucleolar RNA host gene 12 (SNHG12) in ox-LDL-induced phenotype switch of VSMCs remains unclear. Thus, this research dug in whether SNHG12 mediated the influence of ox-LDL on HA-VSMCs and the potential mechanism. METHODS Fundamental experiments and functional assays were performed to measure the function of SNHG12 on HA-VSMCs. Then, mechanism assays and rescue assays were performed to study the regulatory mechanism of SNHG12 in HA-VSMCs. RESULTS SNHG12 reversed the influence of ox-LDL treatment in enhancing cell proliferative and migratory abilities and weakening apoptotic ability in HA-VSMCs. SNHG12 was a competitive endogenous RNA (ceRNA) competing with sprouty RTK signaling antagonist 2 (SPRY2) to bind to miR-1301-3p, thus up-regulating SPRY2 expression in ox-LDL-treated HA-VSMCs. Besides, SNHG12 recruited serine and arginine rich splicing factor 1 (SRSF1) to stabilize negative regulator of ubiquitin like proteins 1 (NUB1) expression. CONCLUSIONS This study illustrated that SNHG12 inhibited cell proliferation, migration and facilitated cell apoptosis in ox-LDL-induced HA-VSMCs by up-regulating SPRY2 and NUB1.
Collapse
Affiliation(s)
- Wenbing Jiang
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Wei Zhao
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Fanhao Ye
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Shiwei Huang
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Youyang Wu
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Hao Chen
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Rui Zhou
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, PR China.
| |
Collapse
|
11
|
Zhang K, Wang Q, Zhao D, Liu Z. Circular RNA circMMP1 Contributes to the Progression of Glioma Through Regulating TGIF2 Expression by Sponging miR-195-5p. Biochem Genet 2021; 60:770-789. [PMID: 34471941 DOI: 10.1007/s10528-021-10119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Glioma is characterized by high morbidity and mortality worldwide. Circular RNA (circRNA) matrix metallopeptidase 1 (circMMP1, hsa_circ_0024108) was reported to be increased in glioma. This study is designed to explore the role and mechanism of circMMP1 in glioma progression. CircMMP1, linear MMP1, microRNA-195-5p (miR-195-5p), and transforming growth factor-beta-induced 2 (TGIF2) level were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The protein levels of TGIF2, Beclin1, and p62 were examined by Western blot assay. Colony number, migration, invasion, and apoptosis were detected by Colony formation, transwell, and flow cytometry assays, severally. The binding relationship between miR-195-5p and circMMP1 or TGIF2 was predicted by starbase or Targetscan and then verified by a dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. The biological role of circMMP1 on glioma cell growth was examined by the xenograft tumor model in vivo. CircMMP1 and TGIF2 expression were upregulated, and miR-195-5p expression was downregulated in glioma tissues and cells. And the knockdown of circMMP1 could block colony formation, migration, and invasion and expedite apoptosis and autophagy in glioma cells. The mechanical analysis discovered that circMMP1 acted as a sponge of miR-195-5p to regulate TGIF2 expression. CircMMP1 knockdown suppressed cell growth of glioma in vivo. CircMMP1 boosted glioma progression partly by targeting the miR-195-5p/TGIF2 axis, suggesting a promising circRNA-targeted therapy for glioma treatment.
Collapse
Affiliation(s)
- Kuiming Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qi Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dehao Zhao
- Department of Neurosurgery, Baoshan People's Hospital, Baoshan, Yunnan, China
| | - Zhen Liu
- Department of Neurosurgery, Nanyang Second General Hospital, No. 66 Jianshe East Road, Nanyang City, 473012, Henan Province, China.
| |
Collapse
|
12
|
Badashah SJ, Basha SS, Ahamed SR, Subba Rao SPV. Fractional‐Harris hawks optimization‐based generative adversarial network for osteosarcoma detection using Renyi entropy‐hybrid fusion. INT J INTELL SYST 2021. [DOI: 10.1002/int.22539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Syed Jahangir Badashah
- Sreenidhi Institute of Science and Technology (Autonomous) Yanampet, Ghatkesar Hyderabad Telangana India
| | - Shaik Shafiulla Basha
- Y.S.R. Engineering College of Yogi Vemana University Korrapadu Road Proddatur Andhra Pradesh India
| | | | - S. P. V. Subba Rao
- Sreenidhi Institute of Science and Technology (Autonomous) Yanampet, Ghatkesar Hyderabad Telangana India
| |
Collapse
|
13
|
Lan H, Wang H, Gao M, Luo G, Zhang J, Yi E, Liang C, Xiong X, Chen X, Wu Q, Chen R, Lin B, Qian D, Hong W. Analysis and Construction of a Competitive Endogenous RNA Regulatory Network of Baicalin-Induced Apoptosis in Human Osteosarcoma Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9984112. [PMID: 34337069 PMCID: PMC8315844 DOI: 10.1155/2021/9984112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/06/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Baicalin is an extract from the traditional Chinese herb Scutellaria baicalensis and has the potential to treat osteosarcoma (OS). However, the transcriptome-level mechanism of baicalin-mediated antitumor effects in OS has not yet been investigated. The aim of this study was to analyze the competitive endogenous RNA (ceRNA) regulatory network involved in baicalin-induced apoptosis of OS cells. METHODS In this study, CCK-8 and flow cytometry assays were used to detect the antitumor effects of baicalin on human OS MG63 cells. Furthermore, transcriptome sequencing was employed to establish the long noncoding RNA (lncRNA), microRNA (miRNA), and mRNA profiles. RESULTS Baicalin inhibited MG63 cell proliferation and induced apoptosis. Totals of 58 lncRNAs, 31 miRNAs, and 2136 mRNAs in the baicalin-treated MG63 cells were identified as differentially expressed RNAs compared to those in control cells. Of these, 2 lncRNAs, 3 miRNAs, and 18 mRNAs were included in the ceRNA regulatory network. The differentially expressed RNAs were confirmed by quantitative real-time PCR (qRT-PCR). CONCLUSIONS By identifying the ceRNA network, our results provide new information about the possible molecular basis of baicalin, which has potential applications in OS treatment.
Collapse
Affiliation(s)
- Haifeng Lan
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiyan Wang
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mi Gao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guan Luo
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiahuan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Erkang Yi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunxiao Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoxiao Xiong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xing Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qinghua Wu
- The Third Clinical School of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruikun Chen
- The Third Clinical School of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Biting Lin
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongyang Qian
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou Medical University/Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, Guangdong, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Zhang J, Jiang P, Wang S, Cheng W, Fu S. LncRNA LIPE-AS1 Predicts Poor Survival of Cervical Cancer and Promotes Its Proliferation and Migration via Modulating miR-195-5p/MAPK Pathway. Front Oncol 2021; 11:639980. [PMID: 33898314 PMCID: PMC8062982 DOI: 10.3389/fonc.2021.639980] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
Aims: A growing number of studies have unveiled that long non-coding RNA (lncRNA) is conductive to cervical cancer (CC) development. However, the effect of LIPE-AS1 is remained to be studied in CC. Main Methods: Reverse transcription-polymerase chain reaction (RT-PCR) was employed to measure LIPE-AS1 expression in CC tissues and the adjacent normal tissues. Additionally, we conducted gain- and loss-of functional experiments of LIPE-AS1 and adopted CCK8 assay, BrdU assay, and in vivo tumor formation experiment to test the proliferation of CC cells (HCC94 and HeLa). Besides, the apoptosis, invasion, and epithelial-mesenchymal transformation (EMT) of CC cells were estimated using flow cytometry, transwell assay, and western blot, respectively. Further, LIPE-AS1 downstream targets were analyzed through bioinformatics, and the binding relationships between LIPE-AS1 and miR-195-5p were verified via dual-luciferase activity experiment and RNA Protein Immunoprecipitation (RIP) assay. Moreover, rescue experiments were conducted to confirm the effects of LIPE-AS1 and miR-195-5p in regulating CC development and the expressions of MAPK signaling pathway related proteins were detected by RT-PCR, western blot, and immunofluorescence. Key Findings: LIPE-AS1 was over-expressed in CC tissues (compared to normal adjacent tissues) and was notably related to tumor volume, distant metastasis. Overexpressing LIPE-AS1 accelerated CC cell proliferation, migration and EMT, inhibited apoptosis; while LIPE-AS1 knockdown had the opposite effects. The mechanism studies confirmed that LIPE-AS1 sponges miR-195-5p as a competitive endogenous RNA (ceRNA), which targets the 3'-untranslated region (3'-UTR) of MAP3K8. LIPE-AS1 promoted the expression of MAP3K8 and enhanced ERK1/2 phosphorylation, which were reversed by miR-195-5p. Significance: LIPE-AS1 regulates CC progression through the miR-195-5p/MAPK signaling pathway, providing new hope for CC diagnosis and treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pinping Jiang
- Department of Gynecology, Nanjing Medical University, Nanjing, China
| | - Shoyu Wang
- Department of Molecular and Cellular Oncology, Nanjing University Medical School, Nanjing, China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shilong Fu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Catellani C, Ravegnini G, Sartori C, Angelini S, Street ME. GH and IGF System: The Regulatory Role of miRNAs and lncRNAs in Cancer. Front Endocrinol (Lausanne) 2021; 12:701246. [PMID: 34484116 PMCID: PMC8415755 DOI: 10.3389/fendo.2021.701246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Growth hormone (GH) and the insulin-like growth factor (IGF) system are involved in many biological processes and have growth-promoting actions regulating cell proliferation, differentiation, apoptosis and angiogenesis. A recent chapter in epigenetics is represented by microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) which regulate gene expression. Dysregulated miRNAs and lncRNAs have been associated with several diseases including cancer. Herein we report the most recent findings concerning miRNAs and lncRNAs regulating GH and the IGF system in the context of pituitary adenomas, osteosarcoma and colorectal cancer, shedding light on new possible therapeutic targets. Pituitary adenomas are increasingly common intracranial tumors and somatotroph adenomas determine supra-physiological GH secretion and cause acromegaly. Osteosarcoma is the most frequent bone tumor in children and adolescents and was reported in adults who were treated with GH in childhood. Colorectal cancer is the third cancer in the world and has a higher prevalence in acromegalic patients.
Collapse
Affiliation(s)
- Cecilia Catellani
- Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gloria Ravegnini
- Department of Pharmacy & Biotechnology, University of Bologna, Bologna, Italy
| | - Chiara Sartori
- Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Sabrina Angelini
- Department of Pharmacy & Biotechnology, University of Bologna, Bologna, Italy
| | - Maria E. Street
- Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- *Correspondence: Maria E. Street,
| |
Collapse
|
16
|
Wang L, Zhou J, Zhang Y, Hu T, Sun Y. Long Non-Coding RNA HCG11 Aggravates Osteosarcoma Carcinogenesis via Regulating the microRNA-579/MMP13 Axis. Int J Gen Med 2020; 13:1685-1695. [PMID: 33408506 PMCID: PMC7781107 DOI: 10.2147/ijgm.s274641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Background Previous studies have suggested that long non-coding RNAs (lncRNAs) were involved in tumorigenesis of various human carcinomas, including osteosarcoma (OS). However, the expression and specific role of lncRNA HLA complex group 11 (HCG11) in OS remain unknown. The current study aimed at revealing the role of lncRNA HCG11 and its related mechanism in OS. Methods lncRNA HCG11 expression was verified with RT-qPCR followed by sub-localization determination. LncRNA-microRNA (miRNA) and miRNA–mRNA interactions were predicted by online bioinformatics websites. Validation was performed using dual-luciferase reporter gene assays, and gain- and loss-of-function experiments. The effects of lncRNA HCG11, miR-579 and matrix metalloproteinase 13 (MMP13) on the proliferation, migration and invasion, epithelial-mesenchymal transition (EMT) of OS cells were detected using cell counting kit-8 (CCK-8), Transwell assays and Western blot analysis. Results LncRNA HCG11 overexpression was observed in OS tissues and cell lines. Downregulation of lncRNA HCG11/MMP13 or overexpression of miR-579 blocked the progression of OS cells. LncRNA HCG11, which is located in the cytoplasm, promoted MMP13 expression through sponging miR-579. Conclusion LncRNA HCG11 might be beneficial for OS aggravation via sponging miR-579 and facilitating MMP13 expression, which represents a candidate biomarker and target for OS therapy.
Collapse
Affiliation(s)
- Lili Wang
- Clinical Laboratory Department, Ningbo Sixth Hospital, Ningbo 315000, Zhejiang, People's Republic of China
| | - Jingzhen Zhou
- Clinical Laboratory Department, Ningbo Second Hospital, Ningbo 315000, Zhejiang, People's Republic of China
| | - Yong Zhang
- Department of Bone Oncology, Ningbo Sixth Hospital, Ningbo 315000, Zhejiang, People's Republic of China
| | - Tao Hu
- Department of Orthopaedics, The First People's Hospital of Yongkang, Yongkang 321300, Zhejiang, People's Republic of China
| | - Yongning Sun
- Clinical Laboratory Department, Ningbo Sixth Hospital, Ningbo 315000, Zhejiang, People's Republic of China
| |
Collapse
|
17
|
Kushlinskii NE, Fridman MV, Braga EA. Long Non-Coding RNAs as Competitive Endogenous RNAs in Osteosarcoma. Mol Biol 2020. [DOI: 10.1134/s0026893320050052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Wang H, Feng L, Zheng Y, Li W, Liu L, Xie S, Zhou Y, Chen C, Cheng D. LINC00680 Promotes the Progression of Non-Small Cell Lung Cancer and Functions as a Sponge of miR-410-3p to Enhance HMGB1 Expression. Onco Targets Ther 2020; 13:8183-8196. [PMID: 32904350 PMCID: PMC7455755 DOI: 10.2147/ott.s259232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose LINC00680 was reported to be involved in various cancers through multiple mechanisms. Therefore, we intended to investigate its role in the progression of non-small cell lung cancer (NSCLC). Materials and Methods Firstly, quantitative real-time polymerase chain reaction (qRT-PCR) was used to test LINC00680 in NSCLC tissue and cell lines. Subsequently, A549 and H1299 cells were transfected with LINC00680 overexpressing plasmids and their proliferation and colony formation and apoptosis was tested by Transwell assay and flow cytometry. In addition, xenograft tumor experiments in nude mice also affirmed. Meanwhile, we predicted that miR-410-3p, LINC00680 and high-mobility group protein box 1(HMGB1) relationship by Starbase, dual-luciferase reporter and RIP assay. Finally, the carcinogenic effects of LINC00680 were reversed by ethyl pyruvate (EP), a specific inhibitor of HMGB1. Results LINC00680 was upregulated in NSCLC and was closely related to the malignancy and poor prognosis of NSCLC patients. LINC00680 promoted proliferation and colony formation and inhibited apoptosis of A549 and H1299 cells. In addition, overexpressing LINC00680 accelerated the growth of NSCLC cells in xenograft tumor experiments in nude mice also affirmed. Meanwhile, high-mobility group protein box 1(HMGB1) was astoundingly amplified in NSCLC and was negatively regulated by miR-410-3p. Further, HMGB1 acted as a downstream target of miR-410-3p, upregulating miR-410-3p to attenuate HMGB1, while LINC00680 strengthened the expression of HMGB1 in A549 and H1299 cells. Discussion Thus, these results indicated that LINC00680 was cancerogenic in NSCLC by upregulating HMGB1 via sponging miR-410-3p.
Collapse
Affiliation(s)
- Hui Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.,Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Li Feng
- Department of Radiology, Chengdu First People's Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Yuqiong Zheng
- Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Liang Liu
- Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Sheng Xie
- Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Yu Zhou
- Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Chaofeng Chen
- Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Deyun Cheng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
19
|
Li F, Yu L, Zhu J. LncRNA PSMA3-AS1 Promotes Lung Cancer Growth and Invasion via Sponging MiR-4504. Cancer Manag Res 2020; 12:5277-5283. [PMID: 32669876 PMCID: PMC7335846 DOI: 10.2147/cmar.s253575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have close correlation with tumorigenesis. And how lncRNAs participate in lung cancer require investigation in-depth. The aim of this study was to determine the role of lncRNA PSMA3-AS1 in lung cancer progression. Methods PSMA3-AS1 expression was analyzed via qRT-PCR. Kaplan–Meier method was used to analyze survival rate based on PSMA3-AS1 value. Proliferation was measured via CCK8 and colony formation assays. Transwell assay was utilized to examine migration and invasion. Luciferase reporter assay and RNA pulldown assay were utilized to analyze the interaction between PSMA3-AS1 and miR-4504. Results PSMA3-AS1 expression was upregulated in lung cancer tissues and cell lines. PSMA3-AS1 expression was positively correlated with clinical stage and metastasis. PSMA3-AS1 overexpression predicted a poor prognosis in lung cancer patients. PSMA3-AS1 knockdown suppressed proliferation, migration and invasion of lung cancer cells. Through bioinformatics analysis, PSMA3-AS1 was predicted to sponge miR-4504. MiR-4504 expression was inhibited by PSMA3-AS1. And inhibition of miR-4504 reversed the effects of PSMA3-AS1 depletion. Conclusion PSMA3-AS1 promotes the tumorigenesis of lung cancer through inhibiting miR-4504.
Collapse
Affiliation(s)
- Fangfang Li
- Department of Respiration Medicine, Qingdao Eighth People's Hospital, Qingdao 266000, People's Republic of China
| | - LianLing Yu
- Department of Respiration Medicine, Qingdao Eighth People's Hospital, Qingdao 266000, People's Republic of China
| | - Jun Zhu
- Department of Inspection, The 5th People's Hospital of Jinan, Jinan 250022, People's Republic of China
| |
Collapse
|
20
|
Xu Y, Jiang W, Zhong L, Li H, Bai L, Chen X, Lin Y, Zheng D. miR-195-5p alleviates acute kidney injury through repression of inflammation and oxidative stress by targeting vascular endothelial growth factor A. Aging (Albany NY) 2020; 12:10235-10245. [PMID: 32492657 PMCID: PMC7346085 DOI: 10.18632/aging.103160] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
Acute kidney injury (AKI) is a common renal dysfunction. Renal ischemia-reperfusion (I/R) injury contributes to AKI progression. The microRNA miR-195-5p can act as a crucial tumor inhibitor in various cancers. However, the potential biological effects of miR-195-5p on AKI are not well-understood. We found that miR-195-5p levels were decreased in the serum samples of patients with AKI. Next, we determined miR-195-5p expression in the renal tissues of the rats and found that it was downregulated. Renal function was evaluated and confirmed using blood urea nitrogen and serum Cr levels. In parallel, the hypoxia-induced NRK-52E cell model was employed, and miR-195-5p was found to be markedly reduced under hypoxic conditions. Furthermore, miR-195-5p was modulated in NRK-52E cells. miR-195-5p induced NRK-52E cell proliferation and protected NRK-52E cells against hypoxia-triggered apoptosis. In an I/R mouse model, miR-195-5p alleviated renal injury triggered by I/R. In addition, oxidative stress and inflammatory factor concentrations were assessed using ELISA. The results showed that miR-195-5p mimicked attenuated oxidative stress induced by I/R injury and downregulated the protein expression of inflammatory factors. Moreover, we identified that vascular endothelial growth factor A (VEGFA) was a target gene of miR-195-5p, which could negatively regulate VEGFA expression in vitro. Inhibitors of miR-195-5p subsequently contributed to renal injury, which was reversed by VEGFA loss. In conclusion, miR-195-5p may repress AKI by targeting VEGFA.
Collapse
Affiliation(s)
- Yong Xu
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China.,Department of Nephrology, Siyang Hospital of Traditional Chinese Medicine, Suqian, China
| | - Wei Jiang
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Lili Zhong
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Hailun Li
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Lin Bai
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xiaoling Chen
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Yongtao Lin
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Donghui Zheng
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
21
|
Yu D, Xu X, Li S, Zhang K. LINC00514 drives osteosarcoma progression through sponging microRNA-708 and consequently increases URGCP expression. Aging (Albany NY) 2020; 12:6793-6807. [PMID: 32325430 PMCID: PMC7202513 DOI: 10.18632/aging.103043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022]
Abstract
Long intergenic nonprotein-coding RNA 00514 (LINC00514) is upregulated in papillary thyroid cancer and contributes to its aggressiveness. In this study, we thoroughly explored the expression profile, specific functions, and relevant molecular mechanism of LINC00514 in osteosarcoma (OS). Herein, LINC00514 was significantly upregulated in OS tissues and cells, and increased LINC00514 expression was closely correlated with tumor size, TNM stage, and distant metastasis. OS patients with high LINC00514 expression had shorter overall survival than those with low LINC00514 expression. LINC00514 interference inhibited OS cell proliferation, colony formation, migration, and invasion in vitro but promoted cell apoptosis and G0/G1 cell cycle arrest. LINC00514 downregulation hindered OS tumor growth in vivo. Mechanistically, LINC00514 functioned as a competing endogenous RNA by directly interacting with microRNA-708-5p (miR-708) and consequently increasing the expression of upregulator of cell proliferation (URGCP). Both miR-708 knockdown and URGCP restoration partially neutralized anticancer activities of LINC00514 silencing in OS cells. LINC00514 increases URGCP expression by acting as a competing endogenous RNA for miR-708, thus exerting oncogenic roles in OS progression. In conclusion, the LINC00514/miR-708/URGCP pathway may be a promising target for drug discovery in the future.
Collapse
Affiliation(s)
- Dapeng Yu
- Department of Spine Surgery, Shandong Provincial ENT Hospital, Shandong Provincial ENT Hospital Affiliated to Shandong University, Ji’nan 250022, Shandong, China
| | - Xiangyan Xu
- Department of Traumatic Orthopedics, Shandong Provincial ENT Hospital, Shandong Provincial ENT Hospital Affiliated to Shandong University, Ji’nan 250022, Shandong, China
| | - Sufen Li
- Orthopedic and Soft Tissue Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan 250117, Shandong, China
| | - Kai Zhang
- Department of Orthopedics, Shandong Provincial Third Hospital, Ji’nan 250031, Shandong, China
| |
Collapse
|
22
|
Du W, Liu T, Zhang Y, Zeng Y, Zhu J, Tang H, Liu Z, Huang JA. MiR-195-5p is a Potential Factor Responsible for CPNE1 Differential Expression between Subtypes of Non-Small Cell Lung Cancer. J Cancer 2020; 11:2610-2620. [PMID: 32201531 PMCID: PMC7066018 DOI: 10.7150/jca.39884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/30/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose: Lung cancer is the most common malignancy with poor 5-year survival among men and women. Previous studies have shown that CPNE1 is up-regulated in non-small cell lung cancer (NSCLC). However, whether and how CPNE1 expression varies between different subtypes of NSCLC remains less understood. Methods: Bioinformatical analysis and GSE19188 were selected to confirm CPNE1 expression in different subtypes of NSCLC. Four microRNA prediction websites and GSE53883, GSE43000 were used to evaluate the possible targeting microRNAs. Kaplan-Meier survival curves were drawn based on Tumor Lung Bild -114 dataset using R2, UCSC Xena browser or linkedomics platform. Furthermore, we verified our prediction via qRT-PCR, and western blot and luciferase reporter assays. Results: we demonstrated that higher CPNE1 expression was associated with poorer survival in NSCLC patients. Moreover, among the different subtypes, patients with squamous cell lung cancer (SCC) exhibited higher level of CPNE1 expression, as well as substantially poorer survival. MiR-195-5p was down-regulated in NSCLC tissues. Interestingly, SCC patients showed lower miR-195-5p expression compared to patients with lung adenocarcinoma (ADC). In addition, functional assays proved that miR-195-5p overexpression inhibited the proliferation, migration, and invasion of NSCLC-derived cells by directly targeting CPNE1. Pathway analysis showed decreased expression of p-AKT, p-Erk, and Snail after transfection with miR-195-5p mimics in both lung adenocarcinoma and squamous cell lines. Conclusion: Our findings suggested that miR-195-5p regulation contributed to the differential expression of CPNE1 in NSCLC subtypes.
Collapse
Affiliation(s)
- Wenwen Du
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Ting Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yang Zhang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yuanyuan Zeng
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Jianjie Zhu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Haicheng Tang
- Department of Respiratory Medicine, the First People's Hospital of Yancheng City, Yancheng, 224001, China
| | - Zeyi Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Jian-an Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| |
Collapse
|