1
|
Zhang Q, Zhu Q, Xiao Y, Yu Q, Shi S. Co-housing with Tibetan chickens improved the resistance of Arbor Acres chickens to Salmonella enterica serovar Enteritidis infection by altering their gut microbiota composition. J Anim Sci Biotechnol 2025; 16:2. [PMID: 39748400 PMCID: PMC11697627 DOI: 10.1186/s40104-024-01132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Salmonella enterica serovar Enteritidis (S. Enteritidis) is a global foodborne pathogen that poses a significant threat to human health, with poultry being the primary reservoir host. Therefore, addressing S. Enteritidis infections in poultry is crucial to protect human health and the poultry industry. In this study, we investigated the effect of co-housing Arbor Acres (AA) chickens, a commercial breed susceptible to S. Enteritidis, with Tibetan chickens, a local breed resistant to S. Enteritidis infection, on the resistance of the latter to the pathogen. RESULTS Ninety-six 1-day-old Tibetan chickens and 96 1-day-old AA chickens were divided into a Tibetan chicken housed alone group (n = 48), an AA chicken housed alone group (n = 48), and a co-housed group (48 birds from each breed for 2 cages). All birds were provided the same diet, and the experimental period lasted 14 d. At d 7, all chickens were infected with S. Enteritidis, and samples were collected at 1-, 3-, and 7-day-post-infection. We found that the body weight of AA chickens significantly increased when co-housed with Tibetan chickens at 1- and 3-day-post-infection (P < 0.05). In addition, the cecal S. Enteritidis load in AA chickens was significantly reduced at 1-, 3-, and 7-day-post-infection (P < 0.05). Furthermore, the inflammatory response in AA chickens decreased, as evidenced by the decreased expression of pro-inflammatory cytokines NOS2, TNF-α, IL-8, IL-1β, and IFN-γ in their cecal tonsils (P < 0.05). Co-housing with Tibetan chickens significantly increased the height of villi and number of goblet cells (P < 0.05), as well as the expression of claudin-1 (P < 0.05), a tight junction protein, in the jejunum of AA chickens. Further analysis revealed that co-housing altered the gut microbiota composition in AA chickens; specifically, the relative abundances of harmful microbes, such as Intestinimonas, Oscillibacter, Tuzzerella, Anaerotruncus, Paludicola, and Anaerofilum were reduced (P < 0.05). CONCLUSIONS Our findings indicate that co-housing with Tibetan chickens enhanced the resistance of AA chickens to S. Enteritidis infection without compromising the resistance of Tibetan chickens. This study provides a novel approach for Salmonella control in practical poultry production.
Collapse
Affiliation(s)
- Qianyun Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Institute of Poultry Sciences, Yangzhou, China
| | - Qidong Zhu
- Jiangsu Institute of Poultry Sciences, Yangzhou, China
| | - Yunqi Xiao
- Jiangsu Institute of Poultry Sciences, Yangzhou, China
| | - Qinghua Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Shourong Shi
- Jiangsu Institute of Poultry Sciences, Yangzhou, China.
| |
Collapse
|
2
|
周 志, 孙 凡, 江 秉. [Research Progress in the Role of Hypoxia-Inducible Factor 1 in Altitude Sickness and the Mechanisms Involved]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1424-1435. [PMID: 39990820 PMCID: PMC11839359 DOI: 10.12182/20241160303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Indexed: 02/25/2025]
Abstract
Individuals who reside at high altitudes for extended periods or those who visit these regions briefly frequently experience high-altitude response, which triggers a series of physiological and pathological changes in the body, ultimately causing altitude sickness. One of the most critical features of high-altitude environments is hypoxia. Recent studies have demonstrated that hypoxia-inducible factor 1 (HIF-1) plays a central role in mediating the body's response to hypoxic conditions at high altitudes. HIF-1, a heterodimeric transcription factor composed of an oxygen-sensitive subunit α (HIF-1α) and a constitutively expressed subunit β (HIF-1β), directly regulates the expression of multiple target genes, thereby modulating various physiological processes essential for cellular adaptation to hypoxia. According to a substantial body of research, aberrant expression of HIF-1 is implicated in the pathogenesis and progression of various diseases, including altitude sickness, cardiovascular disorders, neurological conditions, inflammatory diseases, cognitive impairment, immune dysregulation, and cancer. In this review, we provided an in-depth examination of the structural characteristics and regulatory mechanisms governing HIF-1 expression, discussed its downstream target genes, and highlighted the inhibitors currently under development. Additionally, we summarized the pivotal role and underlying mechanisms of HIF-1 in the development of altitude sickness, particularly its regulatory role in the pathophysiological processes of high-altitude pulmonary edema (HAPE), high-altitude cerebral edema (HACE), and high-altitude pulmonary hypertension (HAPH). Through a thorough examination of the role of HIF-1, we aim to provide a theoretical foundation and potential therapeutic targets for the prevention and treatment of altitude sickness.
Collapse
Affiliation(s)
- 志豪 周
- 天健先进生物医学实验室 郑州大学医学科学院(河南 450000)Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - 凡丽 孙
- 天健先进生物医学实验室 郑州大学医学科学院(河南 450000)Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - 秉华 江
- 天健先进生物医学实验室 郑州大学医学科学院(河南 450000)Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
3
|
Qi L, Xiao L, Fu R, Nie Q, Zhang X, Luo W. Genetic characteristics and selection signatures between Southern Chinese local and commercial chickens. Poult Sci 2024; 103:103863. [PMID: 38810566 PMCID: PMC11166977 DOI: 10.1016/j.psj.2024.103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
The introduction of exotic breeds and the cultivation of new lines by breeding companies have posed challenges to native chickens in South China, including loss of breed characteristics, decreased genetic diversity, and declining purity. Understanding the population genetic structure and genetic diversity of native chickens in South China is crucial for further advancements in breeding efforts. In this study, we analyzed the population genetic structure and genetic diversity of 321 individuals from 10 different breeds in South China. By comparing commercial chickens with native ones, we identified selection signatures occurring between local chickens and commercial breeds. The analysis of population genetic structure revealed that the native chicken populations in South China exhibited a considerable level of genetic diversity. Moreover, the commercial lines of Xiaobai chicken and Huangma chicken displayed even higher levels of genetic diversity, which distinguished them from other native varieties at the clustering level. However, certain individuals within these commercial varieties showed a discernible genetic relationship with the native populations. Notably, both commercial varieties also retained a significant degree of genetic similarity to their respective native counterparts. In order to investigate the genomic changes occurring during the commercialization of native chickens, we employed 4 methods (Fst, ROD, XPCLR, and XPEHH) to identify potential candidate regions displaying selective signatures in Southern Chinese native chicken population. A total of 168 (identified by Fst and ROD) and 86 (identified by XPCLR and XPEHH) overlapping genes were discovered. Functional annotation analysis revealed that these genes may be associated with reproduction and growth (SAMSN1, HYLS1, ROBO3, FGF14, PRSS23), musculoskeletal development (DNER, MYBPC1, DGKB, ORC1, KLF10), disease resistance and environmental adaptability (PUS3, CRB2, CALD1, USP15, SGCD, LTBP1), as well as egg production (ADGRB3, ACSF3). Overall, native chickens in South China harbor numerous selective sweep regions compared to commercial chickens, enriching valuable genomic resources for future genetic research and breeding conservation.
Collapse
Affiliation(s)
- Lin Qi
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou Guangzhou 510642, China
| | - Liangchao Xiao
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou Guangzhou 510642, China
| | - Rong Fu
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou Guangzhou 510642, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou Guangzhou 510642, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou Guangzhou 510642, China.
| |
Collapse
|
4
|
Abdurahman A, Li X, Li J, Liu D, Zhai L, Wang X, Zhang Y, Meng Y, Yokota H, Zhang P. Loading-driven PI3K/Akt signaling and erythropoiesis enhanced angiogenesis and osteogenesis in a postmenopausal osteoporosis mouse model. Bone 2022; 157:116346. [PMID: 35114427 DOI: 10.1016/j.bone.2022.116346] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/21/2022]
Abstract
Bone vasculature influences osteogenesis and haematopoiesis in the bone microenviroment. Mechanical loading has been shown to stimulate the formation of osteogenesis-related type H vessels in an ovariectomy (OVX)-induced osteoporosis mouse model. To determine the loading-driven mechanism of angiogenesis and the formation of type H vessels in bone, we evaluated the roles of PI3K/Akt signaling and erythropoiesis in the bone marrow. The daily application of mechanical loading (1 N at 5 Hz for 6 min/day) for 2 weeks on OVX mice inhibited osteoclast activity, associated with an increase in the number of osteoblasts and trabecular volume ratio. Mechanical loading enhanced bone vasculature and vessel formation, as well as PI3K/Akt phosphorylation and erythropoiesis in the bone marrow. Notably, LY294002, an inhibitor of PI3K signaling, blocked the tube formation by endothelial progenitor cells, as well as their migration and wound healing. The conditioned medium, derived from erythroblasts, also promoted the function of HUVECs with elevated levels of VEGF, CD31, and Emcn. Collectively, this study demonstrates that mechanical loading prevents osteoporotic bone loss by promoting angiogenesis and type H vessel formation. This load-driven preventing effect is in part mediated by PI3K/Akt signaling and erythropoiesis in the bone marrow.
Collapse
Affiliation(s)
- Abdusami Abdurahman
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Lidong Zhai
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xuetong Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yifan Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yao Meng
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, IN 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
5
|
Muroya S, Zhang Y, Kinoshita A, Otomaru K, Oshima K, Gotoh Y, Oshima I, Sano M, Roh S, Oe M, Ojima K, Gotoh T. Maternal Undernutrition during Pregnancy Alters Amino Acid Metabolism and Gene Expression Associated with Energy Metabolism and Angiogenesis in Fetal Calf Muscle. Metabolites 2021; 11:metabo11090582. [PMID: 34564398 PMCID: PMC8465837 DOI: 10.3390/metabo11090582] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022] Open
Abstract
To elucidate the mechanisms underlying maternal undernutrition (MUN)-induced fetal skeletal muscle growth impairment in cattle, the longissimus thoracis muscle of Japanese Black fetal calves at 8.5 months in utero was analyzed by an integrative approach with metabolomics and transcriptomics. The pregnant cows were fed on 60% (low-nutrition, LN) or 120% (high-nutrition, HN) of their overall nutritional requirement during gestation. MUN markedly decreased the bodyweight and muscle weight of the fetus. The levels of amino acids (AAs) and arginine-related metabolites including glutamine, gamma-aminobutyric acid (GABA), and putrescine were higher in the LN group than those in the HN group. Metabolite set enrichment analysis revealed that the highly different metabolites were associated with the metabolic pathways of pyrimidine, glutathione, and AAs such as arginine and glutamate, suggesting that MUN resulted in AA accumulation rather than protein accumulation. The mRNA expression levels of energy metabolism-associated genes, such as PRKAA1, ANGPTL4, APLNR, CPT1B, NOS2, NOS3, UCP2, and glycolytic genes were lower in the LN group than in the HN group. The gene ontology/pathway analysis revealed that the downregulated genes in the LN group were associated with glucose metabolism, angiogenesis, HIF-1 signaling, PI3K-Akt signaling, pentose phosphate, and insulin signaling pathways. Thus, MUN altered the levels of AAs and expression of genes associated with energy expenditure, glucose homeostasis, and angiogenesis in the fetal muscle.
Collapse
Affiliation(s)
- Susumu Muroya
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan; (M.O.); (K.O.)
- Correspondence: (S.M.); (T.G.)
| | - Yi Zhang
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (A.K.); (I.O.)
| | - Aoi Kinoshita
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (A.K.); (I.O.)
| | - Kounosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan;
| | - Kazunaga Oshima
- Division of Year-Round Grazing Research, NARO Western Region Agricultural Research Center, 60 Yoshinaga, Ohda 694-0013, Shimane, Japan; (K.O.); (Y.G.)
| | - Yuji Gotoh
- Division of Year-Round Grazing Research, NARO Western Region Agricultural Research Center, 60 Yoshinaga, Ohda 694-0013, Shimane, Japan; (K.O.); (Y.G.)
| | - Ichiro Oshima
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (A.K.); (I.O.)
| | - Mitsue Sano
- Faculty of Human Culture, University of Shiga Prefecture, 2500 Hassaka-cho, Hikone 522-8533, Shiga, Japan;
| | - Sanggun Roh
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan;
| | - Mika Oe
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan; (M.O.); (K.O.)
| | - Koichi Ojima
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan; (M.O.); (K.O.)
| | - Takafumi Gotoh
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (A.K.); (I.O.)
- Correspondence: (S.M.); (T.G.)
| |
Collapse
|
6
|
Balanophorin B inhibited glycolysis with the involvement of HIF-1α. Life Sci 2020; 267:118910. [PMID: 33359671 DOI: 10.1016/j.lfs.2020.118910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
AIMS Cancer cells exhibit a metabolic change called aerobic glycolysis compared with normal cells. Balanophorin B is a terpenoid ingredient reported from the genus Balanophora. In this research, we studied the effect of balanophorin B on glycolysis of HepG2 cells and Huh-7 cells under hypoxia. MAIN METHODS The Warburg effect was monitored by assessing glucose uptake, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Key enzymes in the glycolytic pathway and HIF-1α protein expression and degradation were analyzed by real-time PCR and western blotting. The anti-cancer effect of balanophorin B in vivo was also investigated. KEY FINDINGS Balanophorin B inhibited the proliferation, glucose uptake, and ECAR in both HepG2 cells and Huh-7 cells. In addition, balanophorin B inhibited the protein level of HIF-1α and its downstream targets LDHA and HKII under hypoxia, whereas HIF-1α mRNA level did not change after balanophorin B treatment. The HIF-1α plasmid reversed the inhibition of balanophorin B on glycolysis, and the proteasome inhibitor MG132 attenuated the effect of balanophorin B on HIF-1α protein expression, suggesting that balanophorin B might post-transcriptionally affect HIF-1α. Moreover, balanophorin B increased the expression of VHL and PHD2. HIF-1α siRNA also greatly attenuated the inhibitory effect of balanophorin B on HepG2 cells glucose uptake. Balanophorin B significantly inhibited tumor growth in vivo, without causing obvious toxicity to mice. SIGNIFICANCE These data suggest that balanophorin B inhibits glycolysis probably via an HIF-1α-dependent pathway, and the ubiquitin-proteasome pathway was greatly involved in the induction of balanophorin B on HIF-1α degradation.
Collapse
|
7
|
Zhang Z, Qiu M, Du H, Li Q, Yu C, Gan W, Peng H, Xia B, Xiong X, Song X, Yang L, Hu C, Chen J, Yang C, Jiang X. Small RNA sequencing reveals miRNAs important for hypoxic adaptation in the Tibetan chicken. Br Poult Sci 2020; 61:632-639. [PMID: 32631087 DOI: 10.1080/00071668.2020.1792835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. The Tibetan chicken, which is an indigenous breed living on the Tibetan Plateau, exhibits hypoxic adaptations to its high-altitude environment. However, the molecular mechanism behind this hypoxic adaptation is still unclear. This study aimed to investigate differentially expressed miRNAs involved in hypoxic adaptation through high-throughput RNA sequencing. 2. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to verify the differentially expressed miRNAs and their target genes in chicken embryonic heart tissues and fibroblasts. Luciferase reporter assays were performed to confirm the relationship between miRNAs and target genes. 3. The study identified 37 differentially expressed miRNAs in Tibetan chicken embryonic heart tissues, including 20 up- and 17 down-regulated miRNAs, compared to those found in lowland chickens. Differentially expressed miRNAs were mainly involved in biological processes, such as cell cycle arrest, toll-like receptor signalling pathways, and I-kappa B kinase/NF-kappa B signalling. The data showed that gga-miR-34 c-5p was significantly upregulated in Tibetan chicken tissues and hypoxic fibroblasts, while EHHADH, a target gene of gga-miR-34 c-5p, was downregulated. Moreover, gga-miR-34 c-5p dramatically decreased the luciferase activity of the wild EHHADH, whereas no effect on the mutational EHHADH was found. 4. This study identified miRNA expression profiles in the Tibetan chicken and suggested that miR-34 c-5p acts as a novel miRNA associated with hypoxic adaptation. This facilitates the understanding of molecular mechanisms that underlie long-term exposure to hypoxia.
Collapse
Affiliation(s)
- Z Zhang
- Poultry Research Institute, Sichuan Animal Science Academy , Chengdu, Sichuan, China.,Poultry Research Institute, Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu, Sichuan, China
| | - M Qiu
- Poultry Research Institute, Sichuan Animal Science Academy , Chengdu, Sichuan, China
| | - H Du
- Poultry Research Institute, Sichuan Animal Science Academy , Chengdu, Sichuan, China
| | - Q Li
- Poultry Research Institute, Sichuan Animal Science Academy , Chengdu, Sichuan, China
| | - C Yu
- Poultry Research Institute, Sichuan Animal Science Academy , Chengdu, Sichuan, China
| | - W Gan
- Poultry Research Institute, Shanghai Ying Biotechnology Company , Shanghai, China
| | - H Peng
- Poultry Research Institute, Sichuan Animal Science Academy , Chengdu, Sichuan, China
| | - B Xia
- Poultry Research Institute, Sichuan Animal Science Academy , Chengdu, Sichuan, China
| | - X Xiong
- Poultry Research Institute, Sichuan Animal Science Academy , Chengdu, Sichuan, China
| | - X Song
- Poultry Research Institute, Sichuan Animal Science Academy , Chengdu, Sichuan, China
| | - L Yang
- Poultry Research Institute, Sichuan Animal Science Academy , Chengdu, Sichuan, China
| | - C Hu
- Poultry Research Institute, Sichuan Animal Science Academy , Chengdu, Sichuan, China
| | - J Chen
- Poultry Research Institute, Sichuan Animal Science Academy , Chengdu, Sichuan, China
| | - C Yang
- Poultry Research Institute, Sichuan Animal Science Academy , Chengdu, Sichuan, China
| | - X Jiang
- Poultry Research Institute, Sichuan Animal Science Academy , Chengdu, Sichuan, China.,Poultry Research Institute, Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu, Sichuan, China
| |
Collapse
|