1
|
Yan WT, Wang JS, Fan PZ, Roberts S, Wright K, Zhang ZZ. The clinical potential of meniscal progenitor cells. THE JOURNAL OF CARTILAGE & JOINT PRESERVATION 2024; 4:None. [PMID: 39669533 PMCID: PMC11636529 DOI: 10.1016/j.jcjp.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/29/2024] [Accepted: 02/11/2024] [Indexed: 12/14/2024]
Abstract
Introduction The meniscus is an important cushioning structure of the knee joint, with the maintenance of its normal structure and function playing a crucial role in protecting the joint from early degeneration. Stem/progenitor cells could be the key to help researchers to have a deeper understanding of the biological process of meniscal injury repair and may be important in the meniscus tissue regeneration processes. To the best of our knowledge, there is currently a lack of comprehensive reviews on existing research about the meniscus progenitor cells (MPCs). Objectives By reviewing the existing MPC literature, we aim to provide insights for future research on meniscus regeneration. Methods The isolation methods, biological characteristics and the translational application of MPCs were summarized. Results MPCs could be isolated according to their colony-forming ability, marker expression, migration ability, and differential adhesion to fibronectin. Most existing studies on surface markers of MPCs have largely followed the paradigm of mesenchymal stromal/stem cell research. Based on the information provided by their surface markers and expression profile, researchers located MPCs in the peripheral surface area of the meniscus. Few researches have investigated the translation and application of MPCs, with most studies being limited to MPCs extraction and subsequent reimplantation in vivo. Conclusions MPCs are a group of meniscus-resident cells, which exhibit certain stem/progenitor cell characteristics, such as the ability to undergo multilineage differentiation in in vitro culture.
Collapse
Affiliation(s)
- Wan-Ting Yan
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing-Song Wang
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | - Sally Roberts
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Karina Wright
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Zheng-Zheng Zhang
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Rajendran R, Gangadaran P, Oh JM, Hong CM, Ahn BC. Engineering Three-Dimensional Spheroid Culture for Enrichment of Proangiogenic miRNAs in Umbilical Cord Mesenchymal Stem Cells and Promotion of Angiogenesis. ACS OMEGA 2024; 9:40358-40367. [PMID: 39372025 PMCID: PMC11447852 DOI: 10.1021/acsomega.4c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024]
Abstract
In the field of regenerative medicine, umbilical cord-derived mesenchymal stem cells (UC-MSCs) have a plausible potential. However, traditional two-dimensional (2D) culture systems remain limited in replicating the complex in vivo microenvironment. Thus, three-dimensional (3D) cultures offer a more physiologically relevant model. This study explored the impact of 3D culture conditions on the UC-MSC secretome and its ability to promote angiogenesis, both in vitro and in vivo. In this study, using two distinct methods, we successfully cultured UC-MSCs: in a monolayer (2D-UC-MSCs) and as spheroids formed in U-shaped 96-well plates (3D-UC-MSCs). The presence and expression of proangiogenic miRNAs in the conditioned media (CM) of these cultures were investigated, and differential expression patterns were explored. Particularly, the CM of 3D-UC-MSCs revealed significantly higher levels of miR-21-5p, miR-126-5p, and miR-130a-3p compared to 2D-UC-MSCs. Moreover, the CM from 3D-UC-MSCs revealed a higher effect on endothelial cell proliferation, migration, and tube formation than did the CM from 2D-UC-MSCs, indicating their proangiogenic potential. In an in vivo Matrigel plug mouse model, 3D-UC-MSCs (cells) stimulated greater vascular formation compared to 2D-UC-MSCs (cells). 3D culture of UC-MSCs' secretome improves the promotion of angiogenesis.
Collapse
Affiliation(s)
- Ramya
Lakshmi Rajendran
- Department
of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Prakash Gangadaran
- Department
of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- BK21
FOUR KNU Convergence Educational Program of Biomedical Sciences for
Creative Future Talents, Department of Biomedical Science, School
of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Ji Min Oh
- Department
of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Chae Moon Hong
- Department
of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department
of Nuclear Medicine, Kyungpook National
University Hospital, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department
of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- BK21
FOUR KNU Convergence Educational Program of Biomedical Sciences for
Creative Future Talents, Department of Biomedical Science, School
of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department
of Nuclear Medicine, Kyungpook National
University Hospital, Daegu 41944, Korea
| |
Collapse
|
3
|
Česnik AB, Švajger U. The issue of heterogeneity of MSC-based advanced therapy medicinal products-a review. Front Cell Dev Biol 2024; 12:1400347. [PMID: 39129786 PMCID: PMC11310176 DOI: 10.3389/fcell.2024.1400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Mesenchymal stromal stem cells (MSCs) possess a remarkable potential for numerous clinical applications due to their unique properties including self-renewal, immunomodulation, paracrine actions and multilineage differentiation. However, the translation of MSC-based Advanced Therapy Medicinal Products (ATMPs) into the clinic has frequently met with inconsistent outcomes. One of the suspected reasons for this issue is the inherent and extensive variability that exists among such ATMPs, which makes the interpretation of their clinical efficacy difficult to assess, as well as to compare the results of various studies. This variability stems from numerous reasons including differences in tissue sources, donor attributes, variances in manufacturing protocols, as well as modes of administration. MSCs can be isolated from various tissues including bone marrow, umbilical cord, adipose tissue and others, each with its unique phenotypic and functional characteristics. While MSCs from different sources do share common features, they also exhibit distinct gene expression profiles and functional properites. Donor-specific factors such as age, sex, body mass index, and underlying health conditions can influence MSC phenotype, morphology, differentiation potential and function. Moreover, variations in preparation of MSC products introduces additional heterogeneity as a result of cell culture media composition, presence or absence of added growth factors, use of different serum supplements and culturing techniques. Once MSC products are formulated, storage protocols play a pivotal role in its efficacy. Factors that affect cell viability include cell concentration, delivery solution and importantly, post-thawing protocols where applicable. Ensuing, differences in administration protocols can critically affect the distribution and functionallity of administered cells. As MSC-based therapies continue to advance through numerous clinical trials, implication of strategies to reduce product heterogeneity is imperative. Central to addressing these challenges is the need for precise prediction of clinical responses, which require well-defined MSC populations and harmonized assessment of their specific functions. By addressing these issues by meaningful approaches, such as, e.g., MSC pooling, the field can overcome barriers to advance towards more consistent and effective MSC-based therapies.
Collapse
Affiliation(s)
- Ana Bajc Česnik
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
| | - Urban Švajger
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Chu W, Zhang F, Zeng X, He F, Shang G, Guo T, Wang Q, Wu J, Li T, Zhong ZZ, Liang X, Hu J, Liu M. A GMP-compliant manufacturing method for Wharton's jelly-derived mesenchymal stromal cells. Stem Cell Res Ther 2024; 15:131. [PMID: 38702793 PMCID: PMC11069138 DOI: 10.1186/s13287-024-03725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) hold great therapeutic potential in regenerative medicine. Therefore, it is crucial to establish a Good Manufacturing Practice (GMP)-compliant methodology for the isolation and culture of WJ-MSCs. Through comprehensive research, encompassing laboratory-scale experiments to pilot-scale studies, we aimed to develop standardized protocols ensuring the high yield and quality of WJ-MSCs manufacturing. METHODS Firstly, optimization of parameters for the enzymatic digestion method used to isolate WJ-MSCs was conducted. These parameters included enzyme concentrations, digestion times, seeding densities, and culture media. Additionally, a comparative analysis between the explant method and the enzymatic digestion method was performed. Subsequently, the consecutive passaging of WJ-MSCs, specifically up to passage 9, was evaluated using the optimized method. Finally, manufacturing processes were developed and scaled up, starting from laboratory-scale flask-based production and progressing to pilot-scale cell factory-based production. Furthermore, a stability study was carried out to assess the storage and use of drug products (DPs). RESULTS The optimal parameters for the enzymatic digestion method were a concentration of 0.4 PZ U/mL Collagenase NB6 and a digestion time of 3 h, resulting in a higher yield of P0 WJ-MSCs. In addition, a positive correlation between the weight of umbilical cord tissue and the quantities of P0 WJ-MSCs has been observed. Evaluation of different concentrations of human platelet lysate revealed that 2% and 5% concentrations resulted in similar levels of cell expansion. Comparative analysis revealed that the enzymatic digestion method exhibited faster outgrowth of WJ-MSCs compared to the explant method during the initial passage. Passages 2 to 5 exhibited higher viability and proliferation ability throughout consecutive passaging. Moreover, scalable manufacturing processes from the laboratory scale to the pilot scale were successfully developed, ensuring the production of high-quality WJ-MSCs. Multiple freeze-thaw cycles of the DPs led to reduced cell viability and viable cell concentration. Subsequent thawing and dilution of the DPs resulted in a significant decrease in both metrics, especially when stored at 20-27 °C. CONCLUSION This study offers valuable insights into optimizing the isolation and culture of WJ-MSCs. Our scalable manufacturing processes facilitate the large-scale production of high-quality WJ-MSCs. These findings contribute to the advancement of WJ-MSCs-based therapies in regenerative medicine.
Collapse
Affiliation(s)
- Wanglong Chu
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Fen Zhang
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Xiuping Zeng
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Fangtao He
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Guanyan Shang
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Tao Guo
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Qingfang Wang
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Jianfu Wu
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Tongjing Li
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Zhen Zhong Zhong
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Xiao Liang
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Junyuan Hu
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China.
| | - Muyun Liu
- National Engineering Research Center of Foundational Technologies for CGT Industry, 518000, Shenzhen, Guangdong, People's Republic of China.
- Shenzhen Kenuo Medical Laboratory, 518000, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Chen P, Lin Y, Lin W, Li Y, Fu T, Liu Y, Guan T, Xin M, Ye L, Wang P, Zeng H, Yao K. Human dental pulp stem cells have comparable abilities to umbilical cord mesenchymal stem/stromal cells in regulating inflammation and ameliorating hepatic fibrosis. Hum Cell 2024; 37:204-213. [PMID: 37964155 DOI: 10.1007/s13577-023-01004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Hepatic fibrosis, also called cirrhosis, have wide prevalence worldwide for long yeas. Recently, many treatments for liver cirrhosis made marked progress, especially the umbilical cord-derived mesenchymal stromal cells (UCMSC) therapy. However, limited recourses and potential immune-related issues become the obstacles on UCMSC popularization in clinic. Therefore, we took dental pulp stem cells (DPSCs) into the consideration, since autologous DPSCs can be easily obtained without any ethnic or immune-related issues that heterogenous UCMSCs could encounter. We systematically compared the effects of both cell types and found that DPSCs had similar results to UCMSCs in regulating inflammation and reversing hepatic fibrosis. In our study, co-culturing T cells and PBMSCs showed that DPSCs have the ability to inhibit the proliferation of inflammatory cells and downregulate relevant inflammatory factors. In vitro and in vivo sterility tests confirmed the bio-safety of DPSCs. Moreover, the 1 year-aged mouse model demonstrated that DPSCs successfully reversed hepatic fibrosis. Overall, DPSCs demonstrated comparable effectiveness to UCMSCs in regulating inflammation and reversing hepatic fibrosis, particularly in the aged mouse model that represents middle-aged and elderly humans. Since autologous DPSCs avoid potential immune-related issues that heterogenous UCMSCs could encounter, they may be a better choice for stem cell-related therapies.
Collapse
Affiliation(s)
- Peixing Chen
- Department of Oncology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Yanchun Lin
- Department of Stem Cell Research Center, Guangdong Procapzoom Biosciences, Inc., 11 Guangpuzhong Rd., Guangzhou, 510000, Guangdong, China
| | - Wenbo Lin
- Department of Oncology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Yun Li
- Department of Stem Cell Research Center, Guangdong Procapzoom Biosciences, Inc., 11 Guangpuzhong Rd., Guangzhou, 510000, Guangdong, China
| | - Ting Fu
- Department of Stem Cell Research Center, Guangdong Procapzoom Biosciences, Inc., 11 Guangpuzhong Rd., Guangzhou, 510000, Guangdong, China
| | - Yuanyue Liu
- Department of Stem Cell Research Center, Guangdong Procapzoom Biosciences, Inc., 11 Guangpuzhong Rd., Guangzhou, 510000, Guangdong, China
| | - Tian Guan
- Department of Stem Cell Research Center, Guangdong Procapzoom Biosciences, Inc., 11 Guangpuzhong Rd., Guangzhou, 510000, Guangdong, China
| | - Man Xin
- Department of Stem Cell Research Center, Guangdong Procapzoom Biosciences, Inc., 11 Guangpuzhong Rd., Guangzhou, 510000, Guangdong, China
| | - Ling Ye
- Department of Stem Cell Research Center, Guangdong Procapzoom Biosciences, Inc., 11 Guangpuzhong Rd., Guangzhou, 510000, Guangdong, China
| | - Peiluan Wang
- Department of Stem Cell Research Center, Guangdong Procapzoom Biosciences, Inc., 11 Guangpuzhong Rd., Guangzhou, 510000, Guangdong, China
| | - Haoyu Zeng
- Department of Stem Cell Research Center, Guangdong Procapzoom Biosciences, Inc., 11 Guangpuzhong Rd., Guangzhou, 510000, Guangdong, China.
| | - Kaitao Yao
- Department of Oncology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China.
| |
Collapse
|
6
|
Liu Y, Song S, Liu Y, Fu T, Guo Y, Liu R, Chen J, Lin Y, Cheng Y, Li Y, Guan T, Ling S, Zeng H. MSCohi-O lenses for long-term retention of mesenchymal stem cells on ocular surface as a therapeutic approach for chronic ocular graft-versus-host disease. Stem Cell Reports 2023; 18:2356-2369. [PMID: 37949071 PMCID: PMC10724054 DOI: 10.1016/j.stemcr.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
Chronic ocular graft-versus-host disease (oGVHD) is a common complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT) and can lead to vision loss if not diagnosed and treated promptly. Currently, no approved drugs exist for oGVHD treatment. However, umbilical cord-derived mesenchymal stem cells (UCMSCs) have known immunoregulatory properties and have been employed in clinical trials for immune-mediated diseases. To address oGVHD, the application of UCMSCs to the ocular surface is a logical approach. Intravenous administration of UCMSCs poses risks, necessitating topical and local delivery. Retaining UCMSCs on the ocular surface remains a challenge. To overcome this, we invented mesenchymal stem cell-coating high oxygen-permeable hydrogel lenses combining UCMSCs and machinery to enable the long-term retention of UCMSCs on the ocular surface. Animal model experiments demonstrated that these lenses effectively retained UCMSCs, providing therapeutic benefits by decreasing corneal inflammation and damage, and inhibiting immune rejection and response, all crucial aspects in oGVHD treatment.
Collapse
Affiliation(s)
- Yuanyue Liu
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Siqi Song
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Youyu Liu
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Ting Fu
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Yanzheng Guo
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Ruoqing Liu
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Jiexing Chen
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Yanchun Lin
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Yaqi Cheng
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yun Li
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Tian Guan
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China
| | - Shiqi Ling
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.
| | - Haoyu Zeng
- Department of Stem Cell Research and Development, Guangdong Procapzoom Biosciences, Inc, Guangdong, China.
| |
Collapse
|
7
|
Cho WJ, Mittal SK, Chauhan SK. Mesenchymal Stromal Cells Suppress T-Cell-Mediated Delayed-Type Hypersensitivity via ALCAM-CD6 Interaction. Stem Cells Transl Med 2023; 12:221-233. [PMID: 36972356 PMCID: PMC10108723 DOI: 10.1093/stcltm/szad012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Mounting evidence suggests mesenchymal stromal cells (MSCs) suppress CD4+ T-cell activation, but whether MSCs directly regulate activation and expansion of allogeneic T cells has not been fully deciphered. Here, we identified that both human and murine MSCs constitutively express ALCAM, a cognate ligand for CD6 receptors on T cells, and investigated its immunomodulatory function using in vivo and in vitro experiments. Our controlled coculture assays demonstrated that ALCAM-CD6 pathway is critical for MSCs to exert its suppressive function on early CD4+CD25- T-cell activation. Moreover, neutralizing ALCAM or CD6 results in the abrogation of MSC-mediated suppression of T-cell expansion. Using a murine model of delayed-type hypersensitivity response to alloantigen, we show that ALCAM-silenced MSCs lose the capacity to suppress the generation of alloreactive IFNγ-secreting T cells. Consequently, MSCs, following ALCAM knockdown, failed to prevent allosensitization and alloreactive T-cell-mediated tissue damage.
Collapse
Affiliation(s)
- WonKyung J Cho
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sharad K Mittal
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Tu CL, Chang W, Sosa JA, Koh J. Digital spatial profiling of human parathyroid tumors reveals cellular and molecular alterations linked to vitamin D deficiency. PNAS NEXUS 2023; 2:pgad073. [PMID: 36992820 PMCID: PMC10042281 DOI: 10.1093/pnasnexus/pgad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Primary hyperparathyroidism (PHPT) is a common endocrine neoplastic disorder characterized by disrupted calcium homeostasis secondary to inappropriately elevated parathyroid hormone (PTH) secretion. Low levels of serum 25-hydroxyvitamin D (25OHD) are significantly more prevalent in PHPT patients than in the general population (1-3), but the basis for this association remains unclear. We employed a spatially defined in situ whole-transcriptomics and selective proteomics profiling approach to compare gene expression patterns and cellular composition in parathyroid adenomas from vitamin D-deficient or vitamin D-replete PHPT patients. A cross-sectional panel of eucalcemic cadaveric donor parathyroid glands was examined in parallel as normal tissue controls. Here, we report that parathyroid tumors from vitamin D-deficient PHPT patients (Def-Ts) are intrinsically different from those of vitamin D-replete patients (Rep-Ts) of similar age and preoperative clinical presentation. The parathyroid oxyphil cell content is markedly higher in Def-Ts (47.8%) relative to Rep-Ts (17.8%) and normal donor glands (7.7%). Vitamin D deficiency is associated with increased expression of electron transport chain and oxidative phosphorylation pathway components. Parathyroid oxyphil cells, while morphologically distinct, are comparable to chief cells at the transcriptional level, and vitamin D deficiency affects the transcriptional profiles of both cell types in a similar manner. These data suggest that oxyphil cells are derived from chief cells and imply that their increased abundance may be induced by low vitamin D status. Gene set enrichment analysis reveals that pathways altered in Def-Ts are distinct from Rep-Ts, suggesting alternative tumor etiologies in these groups. Increased oxyphil content may thus be a morphological indicator of tumor-predisposing cellular stress.
Collapse
Affiliation(s)
- Chia-Ling Tu
- Endocrine Research Unit, Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94158
| | - Wenhan Chang
- Endocrine Research Unit, Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94158
| | - Julie A Sosa
- Endocrine Neoplasia Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA 94143
| | - James Koh
- Endocrine Neoplasia Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
9
|
Murayama E, Vivier C, Schmidt A, Herbomel P. Alcam-a and Pdgfr-α are essential for the development of sclerotome-derived stromal cells that support hematopoiesis. Nat Commun 2023; 14:1171. [PMID: 36859431 PMCID: PMC9977867 DOI: 10.1038/s41467-023-36612-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Mesenchymal stromal cells are essential components of hematopoietic stem and progenitor cell (HSPC) niches, regulating HSPC proliferation and fates. Their developmental origins are largely unknown. In zebrafish, we previously found that the stromal cells of the caudal hematopoietic tissue (CHT), a niche functionally homologous to the mammalian fetal liver, arise from the ventral part of caudal somites. We have now found that this ventral domain is the sclerotome, and that two markers of mammalian mesenchymal stem/stromal cells, Alcam and Pdgfr-α, are distinctively expressed there and instrumental for the emergence and migration of stromal cell progenitors, which in turn conditions the proper assembly of the vascular component of the CHT niche. Furthermore, we find that trunk somites are similarly dependent on Alcam and Pdgfr-α to produce mesenchymal cells that foster HSPC emergence from the aorta. Thus the sclerotome contributes essential stromal cells for each of the key steps of developmental hematopoiesis.
Collapse
Affiliation(s)
- Emi Murayama
- Institut Pasteur, Department of Developmental & Stem Cell Biology, Paris, 75015, France. .,INSERM, Paris, 75013, France. .,CNRS, UMR3738, Paris, 75015, France.
| | - Catherine Vivier
- Institut Pasteur, Department of Developmental & Stem Cell Biology, Paris, 75015, France.,CNRS, UMR3738, Paris, 75015, France
| | - Anne Schmidt
- Institut Pasteur, Department of Developmental & Stem Cell Biology, Paris, 75015, France.,CNRS, UMR3738, Paris, 75015, France
| | - Philippe Herbomel
- Institut Pasteur, Department of Developmental & Stem Cell Biology, Paris, 75015, France.,CNRS, UMR3738, Paris, 75015, France
| |
Collapse
|
10
|
Trevisan B, Rodriguez M, Medder H, Lankford S, Combs R, Owen J, Atala A, Porada CD, Almeida-Porada G. Autologous bone marrow-derived MSCs engineered to express oFVIII-FLAG engraft in adult sheep and produce an effective increase in plasma FVIII levels. Front Immunol 2022; 13:1070476. [PMID: 36532079 PMCID: PMC9755880 DOI: 10.3389/fimmu.2022.1070476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Hemophilia A (HA) is the most common X-linked bleeding disorder, occurring in 1 in 5,000 live male births and affecting >1 million individuals worldwide. Although advances in protein-based HA therapeutics have improved health outcomes, current standard-of-care requires infusion 2-3 times per week for life, and 30% of patients develop inhibitors, significantly increasing morbidity and mortality. There are thus unmet medical needs requiring novel approaches to treat HA. Methods We tested, in a highly translational large animal (sheep) model, whether the unique immunological and biological properties of autologous bone marrow (BM)-derived mesenchymal stromal cells (MSCs) could enable them to serve as cellular delivery vehicles to provide long-term expression of FVIII, avoiding the need for frequent infusions. Results We show that autologous BM-MSCs can be isolated, transduced with a lentivector to produce high levels of ovine (o)FVIII, extensively expanded, and transplanted into adult animals safely. The transplanted cells engraft in multiple organs, and they stably produce and secrete sufficient quantities of FVIII to yield elevated plasma FVIII levels for at least 15 weeks. Discussion These studies thus highlight the promise of cellular-based gene delivery approaches for treating HA.
Collapse
Affiliation(s)
- Brady Trevisan
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Martin Rodriguez
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Hailey Medder
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Shannon Lankford
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Rebecca Combs
- Special Hematology Laboratory, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - John Owen
- Special Hematology Laboratory, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher D. Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States,*Correspondence: Graça Almeida-Porada,
| |
Collapse
|
11
|
Chen H, Wen X, Liu S, Sun T, Song H, Wang F, Xu J, Zhang Y, Zhao Y, Yu J, Sun L. Dissecting Heterogeneity Reveals a Unique BAMBI high MFGE8 high Subpopulation of Human UC-MSCs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2202510. [PMID: 36373720 PMCID: PMC9811468 DOI: 10.1002/advs.202202510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Mixed human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are widely applied in clinical trials to treat various diseases due to their multipotent differentiation potential and immune regulatory activities. However, the lack of a clear understanding of their heterogeneity hampers their application to precisely treat diseases. Moreover, few studies have experimentally authenticated the functions of so-called UC-MSC subpopulations classified from scRNA-seq samples. Here, this work draws a large-scale single-cell transcriptomic atlas and identified three clusters (C1, C2, and C3), representing the primed, intermediate, and stem statuses individually. The C1 and C3 clusters feature higher expression of cytokines and stemness markers, respectively. Surprisingly, further experimental assays reveal that the BAMBIhigh MFGE8high C1 subgroup has a unique phenotype, distinct transcriptomic profile, and limited adipogenic differentiation potential but compromised immunosuppressive activity in vitro and in vivo in lupus mice. Thus, this work is helpful to clarify the nature of human UC-MSCs and to choose optimal MSC types to treat specific diseases in the future.
Collapse
Affiliation(s)
- Hongwei Chen
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Xin Wen
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Shanshan Liu
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Tian Sun
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Hua Song
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Fang Wang
- Department of BiochemistryInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) and School of Basic Medicine Peking Union Medical College (PUMC)Beijing100005P. R. China
| | - Jiayue Xu
- Department of BiochemistryInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) and School of Basic Medicine Peking Union Medical College (PUMC)Beijing100005P. R. China
| | - Yueyang Zhang
- School of Basic Medicine and Clinical PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Jia Yu
- Department of BiochemistryInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) and School of Basic Medicine Peking Union Medical College (PUMC)Beijing100005P. R. China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| |
Collapse
|
12
|
Wang J, Roberts S, Li W, Wright K. Phenotypic characterization of regional human meniscus progenitor cells. Front Bioeng Biotechnol 2022; 10:1003966. [PMID: 36338137 PMCID: PMC9629835 DOI: 10.3389/fbioe.2022.1003966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2023] Open
Abstract
Stimulating meniscus regeneration using meniscal progenitor cells has been suggested as a promising new strategy. However, there is a lack of studies which decisively identify and characterize progenitor cell populations in human meniscus tissues. In this study, donor-matched progenitor cells were isolated via selective fibronectin adhesion from the avascular and vascular regions of the meniscus and chondroprogenitors from articular cartilage (n = 5). The mixed populations of cells from these regions were obtained by standard isolation techniques for comparison. The colony formation efficacy of avascular progenitors, vascular progenitors and chondroprogenitors was monitored using Cell-IQ® live cell imaging. Proliferation rates of progenitors were compared with their mixed population counterparts. Cell surface markers indicative of mesenchymal stromal cells profile and progenitor markers were characterized by flow cytometry in all populations. The fibrochondrogenic capacity was assessed via fibrochondrogenic differentiation and measuring GAG/DNA content and morphology. All meniscal progenitor and chondroprogenitor populations showed superior colony forming efficacy and faster proliferation rates compare to their mixed populations. Progenitor populations showed significantly higher positivity for CD49b and CD49c compared to their mixed population counterparts and chondroprogenitors had a higher positivity level of CD166 compared to mixed chondrocytes. GAG/DNA analysis demonstrated that progenitor cells generally produced more GAG than mixed populations. Our study demonstrates that the human meniscus contains meniscal progenitor populations in both the avascular and vascular regions. Meniscal progenitors derived from the vascular region exhibit enhanced proliferative and fibrochondrogenic characteristics compared to those from the avascular region; this may associate with the enhanced meniscal healing potential in the vascular region. These findings build on the body of evidence which suggests that meniscal progenitors represent an attractive cell therapy strategy for meniscal regeneration.
Collapse
Affiliation(s)
- Jingsong Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Sally Roberts
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Weiping Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Karina Wright
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| |
Collapse
|
13
|
Myogenic Determination and Differentiation of Chicken Bone Marrow-Derived Mesenchymal Stem Cells under Different Inductive Agents. Animals (Basel) 2022; 12:ani12121531. [PMID: 35739868 PMCID: PMC9219535 DOI: 10.3390/ani12121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Muscle development is an important performance factor of broilers. This is the first investigation to evaluate the myogenic differentiation effect of chicken bone marrow-derived mesenchymal stem cells (BM-MSCs) induced by 5-azacytidine (5-Aza). qRT-PCR was performed to compare myogenic determination and differentiation of chicken BM-MSCs under different inductive agents. Transcriptome sequencing and a Western blot were performed to further confirm the myogenic effect induced by 5-Aza. In conclusion, our study indicated that BM-MSCs demonstrate better myogenic differentiation potential under 5-day treatment with 5-Aza. Our findings lay the foundation for constructing a myogenic determination and differentiation model of chicken BM-MSCs. Abstract Poultry plays an important role in the meat consumer market and is significant to further understanding the potential mechanism of muscle development in the broiler. Bone marrow-derived mesenchymal stem cells (BM-MSCs) can provide critical insight into muscle development due to their multi-lineage differentiation potential. To our knowledge, chicken BM-MSCs demonstrate limited myogenic differentiation potential under the treatment with dexamethasone (DXMS) and hydrocortisone (HC). 5-azacytidine (5-Aza), a DNA demethylating agent, which has been widely used in the myogenic differentiation of BM-MSCs in other species. There is no previous report that applies 5-Aza to myogenic-induced differentiation of chicken BM-MSCs. In this study, we evaluated the myogenic determination and differentiation effect of BM-MSCs under different inductive agents. BM-MSCs showed better differentiation potential under the 5-Aza-treatment. Transcriptome sequence analysis identified 2402 differentially expressed DEGs including 28 muscle-related genes after 5-Aza-treatment. The DEGs were significantly enriched in Gene Ontology database terms, including in the cell plasma membrane, molecular binding, and cell cycle and differentiation. KEGG pathway analysis revealed that DEGs were enriched in myogenic differentiation-associated pathways containing the PI3K-Akt signaling pathway, the TGF-β signaling pathway, Arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy, and hypertrophic cardiomyopathy, which suggested that BM-MSCs differentiated into a muscle-like phenotype under 5-Aza-treatment. Although BM-MSCs have not formed myotubes in our study, it is worthy of further study. In summary, our study lays the foundation for constructing a myogenic determination and differentiation model in chicken BM-MSCs.
Collapse
|
14
|
Merimi M, El-Majzoub R, Lagneaux L, Moussa Agha D, Bouhtit F, Meuleman N, Fahmi H, Lewalle P, Fayyad-Kazan M, Najar M. The Therapeutic Potential of Mesenchymal Stromal Cells for Regenerative Medicine: Current Knowledge and Future Understandings. Front Cell Dev Biol 2021; 9:661532. [PMID: 34490235 PMCID: PMC8416483 DOI: 10.3389/fcell.2021.661532] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
In recent decades, research on the therapeutic potential of progenitor cells has advanced considerably. Among progenitor cells, mesenchymal stromal cells (MSCs) have attracted significant interest and have proven to be a promising tool for regenerative medicine. MSCs are isolated from various anatomical sites, including bone marrow, adipose tissue, and umbilical cord. Advances in separation, culture, and expansion techniques for MSCs have enabled their large-scale therapeutic application. This progress accompanied by the rapid improvement of transplantation practices has enhanced the utilization of MSCs in regenerative medicine. During tissue healing, MSCs may exhibit several therapeutic functions to support the repair and regeneration of injured tissue. The process underlying these effects likely involves the migration and homing of MSCs, as well as their immunotropic functions. The direct differentiation of MSCs as a cell replacement therapeutic mechanism is discussed. The fate and behavior of MSCs are further regulated by their microenvironment, which may consequently influence their repair potential. A paracrine pathway based on the release of different messengers, including regulatory factors, chemokines, cytokines, growth factors, and nucleic acids that can be secreted or packaged into extracellular vesicles, is also implicated in the therapeutic properties of MSCs. In this review, we will discuss relevant outcomes regarding the properties and roles of MSCs during tissue repair and regeneration. We will critically examine the influence of the local microenvironment, especially immunological and inflammatory signals, as well as the mechanisms underlying these therapeutic effects. Importantly, we will describe the interactions of local progenitor and immune cells with MSCs and their modulation during tissue injury. We will also highlight the crucial role of paracrine pathways, including the role of extracellular vesicles, in this healing process. Moreover, we will discuss the therapeutic potential of MSCs and MSC-derived extracellular vesicles in the treatment of COVID-19 (coronavirus disease 2019) patients. Overall, this review will provide a better understanding of MSC-based therapies as a novel immunoregenerative strategy.
Collapse
Affiliation(s)
- Makram Merimi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,LBBES Laboratory, Genetics and Immune-Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Rania El-Majzoub
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Beirut, Lebanon.,Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Douâa Moussa Agha
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,LBBES Laboratory, Genetics and Immune-Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Nathalie Meuleman
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.,Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
15
|
Xu XL, Liu H, Zhang Y, Zhang SX, Chen Z, Bao Y, Li TK. SPP1 and FN1 are significant gene biomarkers of tongue squamous cell carcinoma. Oncol Lett 2021; 22:713. [PMID: 34457068 PMCID: PMC8358624 DOI: 10.3892/ol.2021.12974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is one of the most common malignant tumor types in the oral and maxillofacial region. The etiology and pathogenesis behind TSCC is complicated. In the present study, three gene expression profiles, namely GSE31056, GSE13601 and GSE78060, were downloaded from the Gene Expression Omnibus (GEO). The GEO2R online tool was utilized to identify differentially expressed genes (DEGs) between TSCC and normal tissue samples. Furthermore, a protein-protein interaction (PPI) network was constructed and hub genes were validated and analyzed. A total of 83 common DEGs were obtained in three datasets, including 48 upregulated and 35 downregulated genes. Pathway enrichment analysis indicated that DEGs were primarily enriched in cell adhesion, extracellular matrix (ECM) organization, and proteolysis. A total of 63 nodes and 218 edges were included in the PPI network. The top 11 candidate hub genes were acquired, namely plasminogen activator urokinase (PLAU), signal transducer and activator of transcription 1, C-X-C motif chemokine ligand 12, matrix metallopeptidase (MMP) 13, secreted phosphoprotein 1 (SPP1), periostin, MMP1, MMP3, fibronectin 1 (FN1), serpin family E member 1 and snail family transcriptional repressor 2. Overall, 83 DEGs and 11 hub genes were screened from TSCC and normal individuals using bioinformatics and microarray technology. These genes may be used as diagnostic and therapeutic biomarkers for TSCC. In addition, SPP1 and FNl were identified as potential biomarkers for the progression of TSCC.
Collapse
Affiliation(s)
- Xiao-Liang Xu
- Department of Stomatology, The Second Hospital of Tangshan City, Tangshan, Hebei 063000, P.R. China
| | - Hui Liu
- Department of Stomatology, North China University of Science And Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Ying Zhang
- Department of Stomatology, The Third Hospital of Shijiazhuang City, Shijiazhuang, Hebei 050011, P.R. China
| | - Su-Xin Zhang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhong Chen
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yang Bao
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Tian-Ke Li
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
16
|
López R, Martí-Chillón GJ, Blanco JF, da Casa C, González-Robledo J, Pescador D, Preciado S, Muntión S, Sánchez-Guijo F. MSCs from polytrauma patients: preliminary comparative study with MSCs from elective-surgery patients. Stem Cell Res Ther 2021; 12:451. [PMID: 34380565 PMCID: PMC8356428 DOI: 10.1186/s13287-021-02500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background Polytrauma is a major clinical problem due to its impact on morbidity and mortality, especially among the younger population. Its pathophysiology is not completely elucidated, and the study of the involvement of certain cell populations with therapeutic potential, such as mesenchymal stromal cells (MSCs), is an area of growing interest, as mesenchymal cells have anti-inflammatory, immunoregulatory, and osteogenic potential. Methods In the present preliminary work, we have evaluated the characteristics of MSCs in terms of proliferation, immunophenotype, cell cycle, clonogenic capacity, and multilineage differentiation ability in a series of 18 patients with polytrauma and compared them to those from otherwise healthy patients undergoing elective spinal surgery. Results MSCs from polytrauma patients displayed higher proliferative potential with significantly higher cumulative population doublings, increased expression of some important cell adhesion molecules (CD105, CD166), and an early pre-osteogenic differentiation ability compared to those of the control group. Conclusions MSCs could potentially be of help in the repair process of polytrauma patients contribute to both cell-tissue repair and anti-inflammatory response. This potential should be further explored in larger studies. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02500-9.
Collapse
Affiliation(s)
- Raúl López
- Orthopaedic Surgery and Traumatology Department, University Hospital of Salamanca, Salamanca, Spain
| | | | - Juan F Blanco
- Orthopaedic Surgery and Traumatology Department, University Hospital of Salamanca, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain. .,Universidad de Salamanca (USAL), Salamanca, Spain. .,TerCel Network, ISCIII, Madrid, Spain.
| | - Carmen da Casa
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | | | - David Pescador
- Orthopaedic Surgery and Traumatology Department, University Hospital of Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Silvia Preciado
- Haematology Department, University Hospital of Salamanca, Salamanca, Spain.,Network Center in Regenerative Medicine and Cellular Therapy of Castilla y León, Salamanca, Spain
| | - Sandra Muntión
- Haematology Department, University Hospital of Salamanca, Salamanca, Spain.,TerCel Network, ISCIII, Madrid, Spain.,Network Center in Regenerative Medicine and Cellular Therapy of Castilla y León, Salamanca, Spain
| | - Fermín Sánchez-Guijo
- Haematology Department, University Hospital of Salamanca, Salamanca, Spain.,Universidad de Salamanca (USAL), Salamanca, Spain.,TerCel Network, ISCIII, Madrid, Spain.,Network Center in Regenerative Medicine and Cellular Therapy of Castilla y León, Salamanca, Spain
| |
Collapse
|
17
|
Ong WK, Chakraborty S, Sugii S. Adipose Tissue: Understanding the Heterogeneity of Stem Cells for Regenerative Medicine. Biomolecules 2021; 11:biom11070918. [PMID: 34206204 PMCID: PMC8301750 DOI: 10.3390/biom11070918] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ASCs) have been increasingly used as a versatile source of mesenchymal stem cells (MSCs) for diverse clinical investigations. However, their applications often become complicated due to heterogeneity arising from various factors. Cellular heterogeneity can occur due to: (i) nomenclature and criteria for definition; (ii) adipose tissue depots (e.g., subcutaneous fat, visceral fat) from which ASCs are isolated; (iii) donor and inter-subject variation (age, body mass index, gender, and disease state); (iv) species difference; and (v) study design (in vivo versus in vitro) and tools used (e.g., antibody isolation and culture conditions). There are also actual differences in resident cell types that exhibit ASC/MSC characteristics. Multilineage-differentiating stress-enduring (Muse) cells and dedifferentiated fat (DFAT) cells have been reported as an alternative or derivative source of ASCs for application in regenerative medicine. In this review, we discuss these factors that contribute to the heterogeneity of human ASCs in detail, and what should be taken into consideration for overcoming challenges associated with such heterogeneity in the clinical use of ASCs. Attempts to understand, define, and standardize cellular heterogeneity are important in supporting therapeutic strategies and regulatory considerations for the use of ASCs.
Collapse
Affiliation(s)
- Wee Kiat Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
- Correspondence: (W.K.O.); (S.S.)
| | - Smarajit Chakraborty
- Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way, Singapore 138669, Singapore;
| | - Shigeki Sugii
- Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way, Singapore 138669, Singapore;
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Correspondence: (W.K.O.); (S.S.)
| |
Collapse
|
18
|
Sezaki M, Biswas S, Nakata S, Oshima M, Koide S, Ho NPY, Okamoto N, Miyamoto T, Iwama A, Takizawa H. CD271 +CD51 +PALLADIN - Human Mesenchymal Stromal Cells Possess Enhanced Ossicle-Forming Potential. Stem Cells Dev 2021; 30:725-735. [PMID: 33926240 DOI: 10.1089/scd.2021.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human mesenchymal stem/stromal cells (hMSCs), when engrafted into immunodeficient mice, can form ectopic bone organs with hematopoietic stem cell (HSC) supportive functions. However, the ability to do so, through a cartilage intermediate, appears limited to 30% of donor bone marrow samples. In this study, we characterize the heterogeneous nature of hMSCs and their ability to efficiently form humanized ossicles observed in "good donors" to correlate with the frequency and functionality of chondrocyte progenitors. Flow cytometry of putative hMSC markers was enriched in the CD271+CD51+ stromal cell subset, which also possessed enhanced hMSC activity as assessed by single-cell colony-forming unit fibroblast (CFU-F) and undifferentiated mesensphere formation. Transcriptome analysis of CD271+ cells presented upregulation of chondrogenesis-/osteogenesis-related genes and HSC/niche maintenance factors such as C-X-C motif chemokine 12 (CXCL12) and ANGIOPOIETIN 1. Among the candidate genes selected to enrich for subsets with greater chondrogenic ability, cells negative for the actin cross-linker PALLADIN displayed the greatest CFU-F potential. Our study contributes to a better characterization of ossicle-forming hMSCs and their efficient isolation for the optimized engineering of human bone organs.
Collapse
Affiliation(s)
- Maiko Sezaki
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Subinoy Biswas
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Sayuri Nakata
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Nicole Pui Yu Ho
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Nobukazu Okamoto
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Miyamoto
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
19
|
The Molecular Basis of Different Approaches for the Study of Cancer Stem Cells and the Advantages and Disadvantages of a Three-Dimensional Culture. Molecules 2021; 26:molecules26092615. [PMID: 33947095 PMCID: PMC8124970 DOI: 10.3390/molecules26092615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are a rare tumor subpopulation with high differentiation, proliferative and tumorigenic potential compared to the remaining tumor population. CSCs were first discovered by Bonnet and Dick in 1997 in acute myeloid leukemia. The identification and isolation of these cells in this pioneering study were carried out through the flow cytometry, exploiting the presence of specific cell surface molecular markers (CD34+/CD38−). In the following years, different strategies and projects have been developed for the study of CSCs, which are basically divided into surface markers assays and functional assays; some of these techniques also allow working with a cellular model that better mimics the tumor architecture. The purpose of this mini review is to summarize and briefly describe all the current methods used for the identification, isolation and enrichment of CSCs, describing, where possible, the molecular basis, the advantages and disadvantages of each technique with a particular focus on those that offer a three-dimensional culture.
Collapse
|
20
|
Zhao J, Ma L, Ni Z, Liu H. In vitro facilitating role of polygonatum sibiricum polysaccharide in osteogenic differentiation of bone marrow mesenchymal stem cells from patients with multiple myeloma. Biotechnol Lett 2021; 43:1311-1322. [PMID: 33891231 DOI: 10.1007/s10529-021-03125-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/27/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMMSCs) were proved to play a vital role in multiple myeloma (MM). Polygonatum sibiricum polysaccharide (PSP) was found to have anti-tumor pharmacological effects, yet its interaction with BMMSCs remained poorly understood. Therefore, we explore the effect of PSP on osteogenic differentiation of BMMSCs. METHODS BMMSCs were isolated by density gradient centrifugation. CD90 and CD34 were detected by flow cytometry (FCM). Osteogenic marks were detected by quantitative real-time PCR (qRT-PCR) and Western blotting (WB). The vitality of cells treated with different concentrations of PSP was observed by Cell Counting Kit-8 (CCK-8). ALP staining kit was used to detect the activity of alkaline phosphatase (ALP). Alizarin red staining detected the formation of mineralized nodules. Osteoblast-associated genes were evaluated by qRT-PCR and WB. The phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) signaling pathways were tested by WB. RESULTS The BMMSCs showed good growth under an inverted microscope. FCM showed that CD34 and CD45 was low-expressed, whereas CD44, CD90 and CD105 was highly expressed. Compared with the Control group, the expressions of Runx2 and ALP in cells were significantly increased. CCK-8 showed that different concentrations of PSP had no significant effect on the viability of BMMSCs. BMMSCs treated with 25 mg/l PSP were stained the most deeply by ALP. Mineralized nodules in PSP groups dramatically increased, and hit a peak under the action of 25 mg/l PSP. PSP up-regulated p-PI3K, p-AKT, and p-mTOR, but had no significant effect on PI3K, AKT, and mTOR. CONCLUSION PSP induced osteogenic differentiation of BMMSCs from MM patients.
Collapse
Affiliation(s)
- Jianqiang Zhao
- Department of Hematology, The First Affiliated Hospital of Xi'an Medical University, No. 48, Fenghao West Road, Lianhu District, Xi'an, 710077, China
| | - Lijie Ma
- Department of Hematology, The First Affiliated Hospital of Xi'an Medical University, No. 48, Fenghao West Road, Lianhu District, Xi'an, 710077, China.
| | - Zengfeng Ni
- Department of Hematology, The First Affiliated Hospital of Xi'an Medical University, No. 48, Fenghao West Road, Lianhu District, Xi'an, 710077, China
| | - Hui Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Medical University, No. 48, Fenghao West Road, Lianhu District, Xi'an, 710077, China
| |
Collapse
|
21
|
Arthur A, Gronthos S. Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone Microenvironment. Front Cell Dev Biol 2021; 9:598612. [PMID: 33634116 PMCID: PMC7902060 DOI: 10.3389/fcell.2021.598612] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Skeletal integrity is maintained through the tightly regulated bone remodeling process that occurs continuously throughout postnatal life to replace old bone and to repair skeletal damage. This is maintained primarily through complex interactions between bone resorbing osteoclasts and bone forming osteoblasts. Other elements within the bone microenvironment, including stromal, osteogenic, hematopoietic, endothelial and neural cells, also contribute to maintaining skeletal integrity. Disruption of the dynamic interactions between these diverse cellular systems can lead to poor bone health and an increased susceptibility to skeletal diseases including osteopenia, osteoporosis, osteoarthritis, osteomalacia, and major fractures. Recent reports have implicated a direct role for the Eph tyrosine kinase receptors and their ephrin ligands during bone development, homeostasis and skeletal repair. These membrane-bound molecules mediate contact-dependent signaling through both the Eph receptors, termed forward signaling, and through the ephrin ligands, referred to as reverse signaling. This review will focus on Eph/ ephrin cross-talk as mediators of hematopoietic and stromal cell communication, and how these interactions contribute to blood/ bone marrow function and skeletal integrity during normal steady state or pathological conditions.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
22
|
Multiplex Analysis of Adipose-Derived Stem Cell (ASC) Immunophenotype Adaption to In Vitro Expansion. Cells 2021; 10:cells10020218. [PMID: 33499095 PMCID: PMC7911224 DOI: 10.3390/cells10020218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
In order to enhance the therapeutic potential, it is important that sufficient knowledge regarding the dynamic changes of adipose-derived stem cell (ASC) immunophenotypical and biological properties during in vitro growth is available. Consequently, we embarked on a study to follow the evolution of highly defined cell subsets from three unrelated donors in the course of eight passages on tissue culture polystyrene. The co-expression patterns were defined by panels encompassing seven and five cell surface markers, including CD34, CD146, CD166, CD200, CD248, CD271, and CD274 and CD29, CD31, CD36, CD201, and Stro-1, respectively. The analysis was performed using multichromatic flow cytometry. We observed a major paradigm shift, where the CD166-CD34+ combination which was found across all cell subsets early in the culture was replaced by the CD166+ phenotype as the population homogeneity increased with time. At all analysis points, the cultures were dominated by a few major clones that were highly prevalent in most of the donors. The selection process resulted in two predominant clones in the larger panel (CD166+CD34-CD146-CD271- CD274-CD248-CD200- and CD166+CD34+ CD146-CD271-CD274-CD248-CD200-) and one clone in the smaller panel (CD29+CD201+CD36- Stro-1- CD31-). The minor subsets, including CD166+CD34-CD146-CD271+CD274-CD248-CD200- and CD166+CD34+CD146+CD271-CD274-CD248-CD200-, and CD29+CD201-CD36-Stro-1-CD31-, CD29+CD201+CD36-Stro-1+CD31-, and CD29+CD201+CD36+Stro-1-CD31-, in the seven and five marker panels, respectively, were, on the other, hand highly fluctuating and donor-dependent. The results demonstrate that only a limited number of phenotypical repertoires are possible in ASC cultures. Marked differences in their relative occurrence between distinct individuals underscore the need for potency standardization of different ASC preparation to improve the clinical outcome.
Collapse
|
23
|
Low Molecular Weight Hyaluronic Acid Effect on Dental Pulp Stem Cells In Vitro. Biomolecules 2020; 11:biom11010022. [PMID: 33379324 PMCID: PMC7823925 DOI: 10.3390/biom11010022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Hyaluronic acid (HA) and dental pulp stem cells (DPSCs) are attractive research topics, and their combined use in the field of tissue engineering seems to be very promising. HA is a natural extracellular biopolymer found in various tissues, including dental pulp, and due to its biocompatibility and biodegradability, it is also a suitable scaffold material. However, low molecular weight (LMW) fragments, produced by enzymatic cleavage of HA, have different bioactive properties to high molecular weight (HMW) HA. Thus, the impact of HA must be assessed separately for each molecular weight fraction. In this study, we present the effect of three LMW-HA fragments (800, 1600, and 15,000 Da) on DPSCs in vitro. Discrete biological parameters such as DPSC viability, morphology, and cell surface marker expression were determined. Following treatment with LMW-HA, DPSCs initially presented with an acute reduction in proliferation (p < 0.0016) and soon recovered in subsequent passages. They displayed significant size reduction (p = 0.0078, p = 0.0019, p = 0.0098) while maintaining high expression of DPSC markers (CD29, CD44, CD73, CD90). However, in contrast to controls, a significant phenotypic shift (p < 0.05; CD29, CD34, CD90, CD106, CD117, CD146, CD166) of surface markers was observed. These findings provide a basis for further detailed investigations and present a strong argument for the importance of HA scaffold degradation kinetics analysis.
Collapse
|