1
|
Xiao J, Wang WX. Linking HIF oxygen-sensing system diversity to hypoxia fitness in Eleutheronema: Molecular characterization and transcriptional response to hypoxia exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168646. [PMID: 37977389 DOI: 10.1016/j.scitotenv.2023.168646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Hypoxia is a mounting environmental problem affecting coastal waters globally, posing severe consequences for biodiversity and marine life. Metazoans respond to hypoxia stress via the hypoxia-inducible factor (HIF) pathway, but few studies have addressed the gene diversity of the functionally important HIF-pathway. Understanding whether functional diversity exists in the HIF-pathway is a key first step in identifying genes that may impact hypoxia fitness. Here, we leveraged whole-genome resequencing data and bioinformatics tools to identify the key members of the HIF-pathway (HIFα/β, EGLN, and VHL) and genetic diversity in the threatened Eleutheronema. Phylogenetic analysis revealed that teleost-specific duplicates of epas1 (epas1a/b) were followed by the loss of one of each hif1α and hif1αl in Eleutheronema species. Strong collinearity and similarity of gene characteristics suggested the functional conservation of the HIF-pathway during Eleutheronema evolution. Purifying selection was the major theme in HIF-pathway evolution, leading to a reduction in genetic diversity. Substantially low nucleotide diversity of the HIF-pathway was observed among populations, which might indicate the loss of hypoxia fitness in Eleutheronema. Additionally, the normoxic presence of the HIF-pathway differed among tissues and was species-dependent, indicating their diverse roles during development. Significant regulation of HIF-pathway expression levels was observed across tissues under hypoxic conditions, suggesting critical roles in the hypoxia stress response. Moreover, variant molecular characters suggested different roles in response to hypoxia of the HIF-pathway, which were reflected in the different expression patterns across tissues. Our present study provides novel insights into the interplay between gene diversity within the HIF-pathway and hypoxia fitness in threatened Eleutheronema. We highlighted the importance of HIF-pathway-mediated transcriptional regulation in response to hypoxia stress, which provided valuable information for the genetic mechanisms underlying hypoxia adaptation in fish. The bioinformatic methods developed here have broad applications for other species.
Collapse
Affiliation(s)
- Jie Xiao
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
2
|
Volkova YL, Pickel C, Jucht AE, Wenger RH, Scholz CC. The Asparagine Hydroxylase FIH: A Unique Oxygen Sensor. Antioxid Redox Signal 2022; 37:913-935. [PMID: 35166119 DOI: 10.1089/ars.2022.0003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Limited oxygen availability (hypoxia) commonly occurs in a range of physiological and pathophysiological conditions, including embryonic development, physical exercise, inflammation, and ischemia. It is thus vital for cells and tissues to monitor their local oxygen availability to be able to adjust in case the oxygen supply is decreased. The cellular oxygen sensor factor inhibiting hypoxia-inducible factor (FIH) is the only known asparagine hydroxylase with hypoxia sensitivity. FIH uniquely combines oxygen and peroxide sensitivity, serving as an oxygen and oxidant sensor. Recent Advances: FIH was first discovered in the hypoxia-inducible factor (HIF) pathway as a modulator of HIF transactivation activity. Several other FIH substrates have now been identified outside the HIF pathway. Moreover, FIH enzymatic activity is highly promiscuous and not limited to asparagine hydroxylation. This includes the FIH-mediated catalysis of an oxygen-dependent stable (likely covalent) bond formation between FIH and selected substrate proteins (called oxomers [oxygen-dependent stable protein oligomers]). Critical Issues: The (patho-)physiological function of FIH is only beginning to be understood and appears to be complex. Selective pharmacologic inhibition of FIH over other oxygen sensors is possible, opening new avenues for therapeutic targeting of hypoxia-associated diseases, increasing the interest in its (patho-)physiological relevance. Future Directions: The contribution of FIH enzymatic activity to disease development and progression should be analyzed in more detail, including the assessment of underlying molecular mechanisms and relevant FIH substrate proteins. Also, the molecular mechanism(s) involved in the physiological functions of FIH remain(s) to be determined. Furthermore, the therapeutic potential of recently developed FIH-selective pharmacologic inhibitors will need detailed assessment. Antioxid. Redox Signal. 37, 913-935.
Collapse
Affiliation(s)
- Yulia L Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Christina Pickel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Lai XX, Zhang CP, Wu YX, Yang Y, Zhang MQ, Qin WJ, Wang RX, Shu H. Comparative transcriptome analysis reveals physiological responses in liver tissues of Epinephelus coioides under acute hypoxia stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101005. [PMID: 35653833 DOI: 10.1016/j.cbd.2022.101005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Hypoxia is a common stressor for aquatic animals, including Epinephelus coioides, with a considerable impact on sustainable aquaculture. E. coioides is a widely consumed fish in China owing to its high nutritious value and taste. However, water hypoxia caused by high density culture process has become a great threat to E. coioides culture, and its response to hypoxia stress has not been discussed before. Therefore, the aim of this study was to examine the response of E. coioides to acute hypoxia using transcriptomic techniques. To this end, RNA sequencing was performed on the liver tissues of fish exposed to normoxic and hypoxic conditions for 1 h. The results presented 503 differentially expressed genes (DEGs) in the liver tissue of fish exposed to hypoxic condition compared with those in the normoxic group. Enrichment analysis using the Gene Ontology database showed that the DEGs were mainly enriched for functions related to cell apoptosis signaling pathways, insulin resistance, antioxidant enzymes, and glycolysis/gluconeogenesis signaling pathways. KEGG enrichment analysis showed that HIF-1, PI3K-AKT, IL-17, NF-kappa B, and MAPK signaling pathways were significantly enriched by the DEGs. The DEGs were mainly involved in immune response, inflammatory response, cell apoptosis regulation, energy metabolism, and substance metabolism. Additionally, the hypoxia response in E. coioides was mainly regulated via the PI3K-AKT-HIF-1 signaling axis. Overall, the findings of this study contribute to the understanding of hypoxia stress response in E. coioides, and provides target genes for breeding hypoxia-tolerant Epinephelus spp.
Collapse
Affiliation(s)
- Xing-Xing Lai
- School of Life Sciences, Guangzhou University, Guangzhou 51006, China.
| | - Cui-Ping Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 51006, China
| | - Yu-Xin Wu
- School of Life Sciences, Guangzhou University, Guangzhou 51006, China
| | - Yang Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 51006, China
| | - Ming-Qing Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 51006, China
| | - Wei-Jian Qin
- School of Life Sciences, Guangzhou University, Guangzhou 51006, China
| | - Rui-Xuan Wang
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, China.
| | - Hu Shu
- School of Life Sciences, Guangzhou University, Guangzhou 51006, China.
| |
Collapse
|
4
|
Lai Z, Zhao W, Lu Y, Wu L, Yang C, Wang Q. Characterization of transcription factor activator pretein-1 (AP-1) and its association with cold tolerance in Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2022; 124:572-578. [PMID: 35483598 DOI: 10.1016/j.fsi.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
AP-1 is an important transcription factor for cell proliferation/differentiation and animal immunity/development; however, its role in research in shellfish is poorly understood. Here, the cDNA of AP-1 gene from Pinctada fucata martensii was characterized. Its expression was detected in all six examined tissues, and a high level was observed in the gill and hepatopancreas. Analysis of the developmental transcriptomes showed that the PmAP-1 gene expression levels were high during D-stage larval and spat stages. The gene also exhibited a significantly high expression under cold tolerance stress. SNP analysis of the exon region and 5' flanking region of PmAP-1 revealed 19 SNPs of which 8 showed significant differences between cold tolerance selection line and base stock. Furthermore, three haplotypes generated by the SNPs of PmAP-1 were significantly associated with cold tolerance, respectively.These results suggest that the PmAP-1 gene plays an important role in the response of P. f. martensii to low temperature stress. These SNPs and haplotypes of PmAP-1 may be related to the cold tolerance of P. f. martensii, and could be candidate markers potentially for further selective breeding.
Collapse
Affiliation(s)
- Zhuoxin Lai
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wei Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yingying Lu
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Lingjun Wu
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China.
| |
Collapse
|