1
|
Pestana K, Ford A, Rama R, Abagero B, Kepple D, Tomida J, Popovici J, Yewhalaw D, Lo E. Copy Number Variations of Plasmodium vivax DBP1, EBP/DBP2, and RBP2b in Ethiopians Who Are Duffy Positive and Duffy Negative. J Infect Dis 2024; 230:1004-1012. [PMID: 39102894 PMCID: PMC11481331 DOI: 10.1093/infdis/jiae388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
Recent evidence challenges the belief that individuals who are Duffy-negative are resistant to Plasmodium vivax due to lacking the Duffy antigen receptor for chemokines. Erythrocyte-binding protein (EBP/DBP2) has shown moderate binding to Duffy-negative erythrocytes in vitro. Reticulocyte-binding protein 2b (RBP2b) interactions with transferrin receptor 1 suggest involvement in Duffy-negative infections. Gene copy number variations in PvDBP1, PvEBP/DBP2, and PvRBP2b were investigated in Duffy-positive and Duffy-negative P vivax infections from Ethiopia. Among Duffy-positive samples, 34% displayed PvDBP1 duplications (Cambodian type). In Duffy-negative infections, 30% showed duplications, mostly Cambodian type. For PvEBP/DBP2 and PvRBP2b, Duffy-positive samples exhibited higher duplication rates (1-8 copies for PvEBP/DBP2, 46%; 1-5 copies for PvRBP2b, 43%) as compared with Duffy-negative samples (20.8% and 26%, respectively). The range of copy number variations was lower in Duffy-negative infections. Demographic and clinical factors associated with gene multiplications in both Duffy types were explored, enhancing understanding of P vivax evolution in Africans who are Duffy negative.
Collapse
Affiliation(s)
- Kareen Pestana
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Anthony Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Rei Rama
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Beka Abagero
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Daniel Kepple
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Junya Tomida
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Jean Popovici
- Malaria Molecular Epidemiology Unit, Malaria Translational Research Unit, Institut Pasteur du Cambodge, Institut Pasteur, Phnom Penh, Cambodia
- Infectious Disease Epidemiology and Analytics, Institut Pasteur, Paris, France
| | - Delenasaw Yewhalaw
- Tropical Infectious Disease Research Center, Jimma University, Jimma, Ethiopia
| | - Eugenia Lo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Winzeler E, Carolino K, De Souza ML, Chen D, Farre JC, Blauwkamp J, Absalon S, Ghidelli-Disse S, Morano A, Dvorin J, Lafuente-Monasterio MJ, Gamo FJ. Plasmodium SEY1 is a novel druggable target that contributes to imidazolopiperazine mechanism of action. RESEARCH SQUARE 2024:rs.3.rs-4892449. [PMID: 39399671 PMCID: PMC11469372 DOI: 10.21203/rs.3.rs-4892449/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The precise mode of action of ganaplacide (KAF156), a phase III antimalarial candidate, remains elusive. Here we employ omics-based methods with the closely related chemical analog, GNF179, to search for potential Plasmodium targets. Ranking potential targets derived from chemical genetics and proteomic affinity chromatography methodologies identifies SEY1, or Synthetic Enhancement of YOP1, which is predicted to encode an essential dynamin-like GTPase implicated in homotypic fusion of endoplasmic reticulum (ER) membranes. We demonstrate that GNF179 decreases Plasmodium SEY1 melting temperature. We further show that GNF179 binds to recombinant Plasmodium SEY1 and subsequently inhibits its GTPase activity, which is required for maintaining ER architecture. Using ultrastructure expansion microscopy, we find GNF179 treatment changes parasite ER and Golgi morphology. We also confirm that SEY1 is an essential gene in P. falciparum. These data suggest that SEY1 may contribute to the mechanism of action of imidazolopiperazines and is a new and attractive druggable target.
Collapse
|
3
|
Tran THT, Hien BTT, Dung NTL, Huong NT, Binh TT, Van Long N, Ton ND. Evaluation of Dihydroartemisinin-Piperaquine Efficacy and Molecular Markers in Uncomplicated Falciparum Patients: A Study across Binh Phuoc and Dak Nong, Vietnam. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1013. [PMID: 38929629 PMCID: PMC11205605 DOI: 10.3390/medicina60061013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Malaria continues to be a significant global health challenge. The efficacy of artemisinin-based combination therapies (ACTs) has declined in many parts of the Greater Mekong Subregion, including Vietnam, due to the spread of resistant malaria strains. This study was conducted to assess the efficacy of the Dihydroartemisinin (DHA)-Piperaquine (PPQ) regimen in treating uncomplicated falciparum malaria and to conduct molecular surveillance of antimalarial drug resistance in Binh Phuoc and Dak Nong provinces. Materials and Methods: The study included 63 uncomplicated malaria falciparum patients from therapeutic efficacy studies (TES) treated following the WHO treatment guidelines (2009). Molecular marker analysis was performed on all 63 patients. Methods encompassed Sanger sequencing for pfK13 mutations and quantitative real-time PCR for the pfpm2 gene. Results: This study found a marked decrease in the efficacy of the DHA-PPQ regimen, with an increased rate of treatment failures at two study sites. Genetic analysis revealed a significant presence of pfK13 mutations and pfpm2 amplifications, indicating emerging resistance to artemisinin and its partner drug. Conclusions: The effectiveness of the standard DHA-PPQ regimen has sharply declined, with rising treatment failure rates. This decline necessitates a review and possible revision of national malaria treatment guidelines. Importantly, molecular monitoring and clinical efficacy assessments together provide a robust framework for understanding and addressing detection drug resistance in malaria.
Collapse
Affiliation(s)
- Thu Huyen Thi Tran
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Bui Thi Thu Hien
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
| | - Nguyen Thi Lan Dung
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
| | - Nguyen Thi Huong
- National Burn Hospital, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Tran Thanh Binh
- 103 Hospital, Vietnam Military Medical University, Hanoi 100000, Vietnam;
| | - Nguyen Van Long
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
| | - Nguyen Dang Ton
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| |
Collapse
|
4
|
Azad MTA, Sugi T, Qulsum U, Kato K. Detection of Developmental Asexual Stage-Specific RNA Editing Events in Plasmodium falciparum 3D7 Malaria Parasite. Microorganisms 2024; 12:137. [PMID: 38257964 PMCID: PMC10819399 DOI: 10.3390/microorganisms12010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Transcriptional variation has been studied but post-transcriptional modification due to RNA editing has not been investigated in Plasmodium. We investigated developmental stage-specific RNA editing in selected genes in Plasmodium falciparum 3D7. We detected extensive amination- and deamination-type RNA editing at 8, 16, 24, 32, 40, and 46 h in tightly synchronized Plasmodium. Most of the editing events were observed in 8 and 16 h ring-stage parasites. Extensive A-to-G deamination-type editing was detected more during the 16 h ring stage (25%) than the 8 h ring stage (20%). Extensive U-to-C amination-type editing was detected more during the 16 h ring stage (31%) than the 8 h ring stage (22%). In 28S, rRNA editing converted the loop structure to the stem structure. The hemoglobin binding activity of PF3D7_0216900 was also altered due to RNA editing. Among the expressed 28S rRNA genes, PF3D7_0532000 and PF3D7_0726000 expression was higher. Increased amounts of the transcripts of these two genes were found, particularly PF3D7_0726000 in the ring stage and PF3D7_0532000 in the trophozoite and schizont stages. Adenosine deaminase (ADA) expression did not correlate with the editing level. This first experimental report of RNA editing will help to identify the editing machinery that might be useful for antimalarial drug discovery and malaria control.
Collapse
Affiliation(s)
- Md Thoufic Anam Azad
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Tatsuki Sugi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Nishi10-Kita 20, Sapporo 001-0020, Japan
| | - Umme Qulsum
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
- Department of Botany, Faculty of Biological Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
| |
Collapse
|
5
|
Nakanishi M, Hino M, Nomoto H. Trypanosoma brucei proliferates normally even after losing all S-adenosylhomocysteine hydrolase genes. Biochem Biophys Res Commun 2023; 686:149152. [PMID: 37926042 DOI: 10.1016/j.bbrc.2023.149152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
S-adenosylhomocysteine (SAH) hydrolase is the enzyme responsible for breaking down SAH into adenosine and homocysteine. It has long been believed that a deficiency of this enzyme leads to SAH accumulation, subsequently inhibiting methyltransferases responsible for nucleic acids and proteins, which severely affects cell proliferation. To investigate whether targeting this enzyme could be a viable strategy to combat Trypanosoma brucei, the causative agent of human African trypanosomiasis, we created a null mutant of the SAH hydrolase gene in T. brucei using the Cre/loxP system and conducted a phenotype analysis. Surprisingly, the null mutant, where all five SAH hydrolase gene loci were deleted, exhibited normal proliferation despite the observed SAH accumulation. These findings suggest that inhibiting SAH hydrolase may not be an effective approach to suppressing T. brucei proliferation, making the enzyme a less promising target for antitrypanosome drug development.
Collapse
Affiliation(s)
- Masayuki Nakanishi
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, 790-8578, Japan.
| | - Mami Hino
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, 790-8578, Japan.
| | - Hiroshi Nomoto
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, 790-8578, Japan.
| |
Collapse
|
6
|
Robinson D, Vanacloig-Pedros E, Cai R, Place M, Hose J, Gasch AP. Gene-by-environment interactions influence the fitness cost of gene copy-number variation in yeast. G3 (BETHESDA, MD.) 2023; 13:jkad159. [PMID: 37481264 PMCID: PMC10542507 DOI: 10.1093/g3journal/jkad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/11/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Variation in gene copy number can alter gene expression and influence downstream phenotypes; thus copy-number variation provides a route for rapid evolution if the benefits outweigh the cost. We recently showed that genetic background significantly influences how yeast cells respond to gene overexpression, revealing that the fitness costs of copy-number variation can vary substantially with genetic background in a common-garden environment. But the interplay between copy-number variation tolerance and environment remains unexplored on a genomic scale. Here, we measured the tolerance to gene overexpression in four genetically distinct Saccharomyces cerevisiae strains grown under sodium chloride stress. Overexpressed genes that are commonly deleterious during sodium chloride stress recapitulated those commonly deleterious under standard conditions. However, sodium chloride stress uncovered novel differences in strain responses to gene overexpression. West African strain NCYC3290 and North American oak isolate YPS128 are more sensitive to sodium chloride stress than vineyard BC187 and laboratory strain BY4743. Consistently, NCYC3290 and YPS128 showed the greatest sensitivities to overexpression of specific genes. Although most genes were deleterious, hundreds were beneficial when overexpressed-remarkably, most of these effects were strain specific. Few beneficial genes were shared between the sodium chloride-sensitive isolates, implicating mechanistic differences behind their sodium chloride sensitivity. Transcriptomic analysis suggested underlying vulnerabilities and tolerances across strains, and pointed to natural copy-number variation of a sodium export pump that likely contributes to strain-specific responses to overexpression of other genes. Our results reveal extensive strain-by-environment interactions in the response to gene copy-number variation, raising important implications for the accessibility of copy-number variation-dependent evolutionary routes under times of stress.
Collapse
Affiliation(s)
- DeElegant Robinson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Elena Vanacloig-Pedros
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Ruoyi Cai
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53704, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, USA
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53704, USA
| |
Collapse
|
7
|
Robinson D, Vanacloig-Pedros E, Cai R, Place M, Hose J, Gasch AP. Gene-by-environment interactions influence the fitness cost of gene copy-number variation in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540375. [PMID: 37503218 PMCID: PMC10369901 DOI: 10.1101/2023.05.11.540375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Variation in gene copy number can alter gene expression and influence downstream phenotypes; thus copy-number variation (CNV) provides a route for rapid evolution if the benefits outweigh the cost. We recently showed that genetic background significantly influences how yeast cells respond to gene over-expression (OE), revealing that the fitness costs of CNV can vary substantially with genetic background in a common-garden environment. But the interplay between CNV tolerance and environment remains unexplored on a genomic scale. Here we measured the tolerance to gene OE in four genetically distinct Saccharomyces cerevisiae strains grown under sodium chloride (NaCl) stress. OE genes that are commonly deleterious during NaCl stress recapitulated those commonly deleterious under standard conditions. However, NaCl stress uncovered novel differences in strain responses to gene OE. West African strain NCYC3290 and North American oak isolate YPS128 are more sensitive to NaCl stress than vineyard BC187 and laboratory strain BY4743. Consistently, NCYC3290 and YPS128 showed the greatest sensitivities to gene OE. Although most genes were deleterious, hundreds were beneficial when overexpressed - remarkably, most of these effects were strain specific. Few beneficial genes were shared between the NaCl-sensitive isolates, implicating mechanistic differences behind their NaCl sensitivity. Transcriptomic analysis suggested underlying vulnerabilities and tolerances across strains, and pointed to natural CNV of a sodium export pump that likely contributes to strain-specific responses to OE of other genes. Our results reveal extensive strain-by-environment interaction in the response to gene CNV, raising important implications for the accessibility of CNV-dependent evolutionary routes under times of stress.
Collapse
Affiliation(s)
- DeElegant Robinson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
| | - Elena Vanacloig-Pedros
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53704
| | - Ruoyi Cai
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53704
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison WI 53704
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53704
- Department of Medical Genetics, University of Wisconsin-Madison, Madison WI 53704
| |
Collapse
|
8
|
Tadele G, Jawara A, Oboh M, Oriero E, Dugassa S, Amambua-Ngwa A, Golassa L. Clinical isolates of uncomplicated falciparum malaria from high and low malaria transmission areas show distinct pfcrt and pfmdr1 polymorphisms in western Ethiopia. Malar J 2023; 22:171. [PMID: 37270589 DOI: 10.1186/s12936-023-04602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/20/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Pfcrt gene has been associated with chloroquine resistance and the pfmdr1 gene can alter malaria parasite susceptibility to lumefantrine, mefloquine, and chloroquine. In the absence of chloroquine (CQ) and extensive use of artemether-lumefantrine (AL) from 2004 to 2020 to treat uncomplicated falciparum malaria, pfcrt haplotype, and pfmdr1 single nucleotide polymorphisms (SNPs) were determined in two sites of West Ethiopia with a gradient of malaria transmission. METHODS 230 microscopically confirmed P. falciparum isolates were collected from Assosa (high transmission area) and Gida Ayana (low transmission area) sites, of which 225 of them tested positive by PCR. High-Resolution Melting Assay (HRM) was used to determine the prevalence of pfcrt haplotypes and pfmdr1 SNPs. Furthermore, the pfmdr1 gene copy number (CNV) was determined using real-time PCR. A P-value of less or equal to 0.05 was considered significant. RESULTS Of the 225 samples, 95.5%, 94.4%, 86.7%, 91.1%, and 94.2% were successfully genotyped with HRM for pfcrt haplotype, pfmdr1-86, pfmdr1-184, pfmdr1-1042 and pfmdr1-1246, respectively. The mutant pfcrt haplotypes were detected among 33.5% (52/155) and 80% (48/60) of isolates collected from the Assosa and Gida Ayana sites, respectively. Plasmodium falciparum with chloroquine-resistant haplotypes was more prevalent in the Gida Ayana area compared with the Assosa area (COR = 8.4, P = 0.00). Pfmdr1-N86Y wild type and 184F mutations were found in 79.8% (166/208) and 73.4% (146/199) samples, respectively. No single mutation was observed at the pfmdr1-1042 locus; however, 89.6% (190/212) of parasites in West Ethiopia carry the wild-type D1246Y variants. Eight pfmdr1 haplotypes at codons N86Y-Y184F-D1246Y were identified with the dominant NFD 61% (122/200). There was no difference in the distribution of pfmdr1 SNPs, haplotypes, and CNV between the two study sites (P > 0.05). CONCLUSION Plasmodium falciparum with the pfcrt wild-type haplotype was prevalent in high malaria transmission site than in low transmission area. The NFD haplotype was the predominant haplotype of the N86Y-Y184F-D1246Y. A continuous investigation is needed to closely monitor the changes in the pfmdr1 SNPs, which are associated with the selection of parasite populations by ACT.
Collapse
Affiliation(s)
- Geletta Tadele
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aminata Jawara
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Mary Oboh
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Eniyou Oriero
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
9
|
Sharbatoghli M, Fattahi F, Aboulkheyr Es H, Akbari A, Akhavan S, Ebrahimi M, Asadi-Lari M, Totonchi M, Madjd Z. Copy Number Variation of Circulating Tumor DNA (ctDNA) Detected Using NIPT in Neoadjuvant Chemotherapy-Treated Ovarian Cancer Patients. Front Genet 2022; 13:938985. [PMID: 35938032 PMCID: PMC9355329 DOI: 10.3389/fgene.2022.938985] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
Abstract
Analysis of circulating tumor DNA (ctDNA) can be used to characterize and monitor cancers. Recently, non-invasive prenatal testing (NIPT) as a new next-generation sequencing (NGS)-based approach has been applied for detecting ctDNA. This study aimed to investigate the copy number variations (CNVs) utilizing the non-invasive prenatal testing in plasma ctDNA from ovarian cancer (OC) patients who were treated with neoadjuvant chemotherapy (NAC). The plasma samples of six patients, including stages II–IV, were collected during the pre- and post-NAC treatment that were divided into NAC-sensitive and NAC-resistant groups during the follow-up time. CNV analysis was performed using the NIPT via two methods “an open-source algorithm WISECONDORX and NextGENe software.” Results of these methods were compared in pre- and post-NAC of OC patients. Finally, bioinformatics tools were used for data mining from The Cancer Genome Atlas (TCGA) to investigate CNVs in OC patients. WISECONDORX analysis indicated fewer CNV changes on chromosomes before treatment in the NAC-sensitive rather than NAC-resistant patients. NextGENe data indicated that CNVs are not only observed in the coding genes but also in non-coding genes. CNVs in six genes were identified, including HSF1, TMEM249, MROH1, GSTT2B, ABR, and NOMO2, only in NAC-resistant patients. The comparison of these six genes in NAC-resistant patients with The Cancer Genome Atlas data illustrated that the total alteration frequency is amplification, and the highest incidence of the CNVs (≥35% based on TCGA data) is found in MROH1, TMEM249, and HSF1 genes on the chromosome (Chr) 8. Based on TCGA data, survival analysis showed a significant reduction in the overall survival among chemotherapy-resistant patients as well as a high expression level of these three genes compared to that of sensitive samples (all, p < 0.0001). The continued Chr8 study using WISECONDORX revealed CNV modifications in NAC-resistant patients prior to NAC therapy, but no CNV changes were observed in NAC-sensitive individuals. Our findings showed that low coverage whole-genome sequencing analysis used for NIPT could identify CNVs in ctDNA of OC patients before and after chemotherapy. These CNVs are different in NAC-sensitive and -resistant patients highlighting the potential application of this approach in cancer patient management.
Collapse
Affiliation(s)
- Mina Sharbatoghli
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Arvand Akbari
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Setareh Akhavan
- Department of Gynecologic Oncology, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohsen Asadi-Lari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- *Correspondence: Zahra Madjd, ; Mehdi Totonchi,
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- *Correspondence: Zahra Madjd, ; Mehdi Totonchi,
| |
Collapse
|
10
|
Abstract
In 2001, the concept of the neurovascular unit was introduced at the Stroke Progress Review Group meeting. The neurovascular unit is an important element of the health and disease status of blood vessels and nerves in the central nervous system. Since then, the neurovascular unit has attracted increasing interest from research teams, who have contributed greatly to the prevention, treatment, and prognosis of stroke and neurodegenerative diseases. However, additional research is needed to establish an efficient, low-cost, and low-energy in vitro model of the neurovascular unit, as well as enable noninvasive observation of neurovascular units in vivo and in vitro. In this review, we first summarize the composition of neurovascular units, then investigate the efficacy of different types of stem cells and cell culture methods in the construction of neurovascular unit models, and finally assess the progress of imaging methods used to observe neurovascular units in recent years and their positive role in the monitoring and investigation of the mechanisms of a variety of central nervous system diseases.
Collapse
Affiliation(s)
- Taiwei Dong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Min Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Feng Gao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Peifeng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Jian Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Provinve, China
| |
Collapse
|
11
|
Ndiaye YD, Hartl DL, McGregor D, Badiane A, Fall FB, Daniels RF, Wirth DF, Ndiaye D, Volkman SK. Genetic surveillance for monitoring the impact of drug use on Plasmodium falciparum populations. Int J Parasitol Drugs Drug Resist 2021; 17:12-22. [PMID: 34333350 PMCID: PMC8342550 DOI: 10.1016/j.ijpddr.2021.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
The use of antimalarial drugs is an effective strategy in the fight against malaria. However, selection of drug resistant parasites is a constant threat to the continued use of this approach. Antimalarial drugs are used not only to treat infections but also as part of population-level strategies to reduce malaria transmission toward elimination. While there is strong evidence that the ongoing use of antimalarial drugs increases the risk of the emergence and spread of drug-resistant parasites, it is less clear how population-level use of drug-based interventions like seasonal malaria chemoprevention (SMC) or mass drug administration (MDA) may contribute to drug resistance or loss of drug efficacy. Critical to sustained use of drug-based strategies for reducing the burden of malaria is the surveillance of population-level signals related to transmission reduction and resistance selection. Here we focus on Plasmodium falciparum and discuss the genetic signatures of a parasite population that are correlated with changes in transmission and related to drug pressure and resistance as a result of drug use. We review the evidence for MDA and SMC contributing to malaria burden reduction and drug resistance selection and examine the use and impact of these interventions in Senegal. Throughout we consider best strategies for ongoing surveillance of both population and resistance signals in the context of different parasite population parameters. Finally, we propose a roadmap for ongoing surveillance during population-level drug-based interventions to reduce the global malaria burden.
Collapse
Affiliation(s)
| | | | - David McGregor
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | | | - Fatou Ba Fall
- Programme National de Lutte Contre le Paludisme, Senegal.
| | - Rachel F Daniels
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | - Dyann F Wirth
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | | | - Sarah K Volkman
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA; Simmons University, Boston, MA, USA.
| |
Collapse
|
12
|
McDaniels JM, Huckaby AC, Carter SA, Lingeman S, Francis A, Congdon M, Santos W, Rathod PK, Guler JL. Extrachromosomal DNA amplicons in antimalarial-resistant Plasmodium falciparum. Mol Microbiol 2021; 115:574-590. [PMID: 33053232 PMCID: PMC8246734 DOI: 10.1111/mmi.14624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/29/2022]
Abstract
Extrachromosomal (ec) DNAs are genetic elements that exist separately from the genome. Since ecDNA can carry beneficial genes, they are a powerful adaptive mechanism in cancers and many pathogens. For the first time, we report ecDNA contributing to antimalarial resistance in Plasmodium falciparum, the most virulent human malaria parasite. Using pulse field gel electrophoresis combined with PCR-based copy number analysis, we detected two ecDNA elements that differ in migration and structure. Entrapment in the electrophoresis well and low susceptibility to exonucleases revealed that the biologically relevant ecDNA element is large and complex in structure. Using deep sequencing, we show that ecDNA originates from the chromosome and expansion of an ecDNA-specific sequence may improve its segregation or expression. We speculate that ecDNA is maintained using established mechanisms due to shared characteristics with the mitochondrial genome. Implications of ecDNA discovery in this organism are wide-reaching due to the potential for new strategies to target resistance development.
Collapse
Affiliation(s)
| | - Adam C. Huckaby
- Department of BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | | | | | - Audrey Francis
- Department of BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | | | | | | | - Jennifer L. Guler
- Department of BiologyUniversity of VirginiaCharlottesvilleVAUSA
- Division of Infectious Diseases and International HealthDepartment of MedicineUniversity of VirginiaCharlottesvilleVAUSA
| |
Collapse
|
13
|
Lopes SP, Yepes LM, Pérez-Castillo Y, Robledo SM, de Sousa DP. Alkyl and Aryl Derivatives Based on p-Coumaric Acid Modification and Inhibitory Action against Leishmania braziliensis and Plasmodium falciparum. Molecules 2020; 25:molecules25143178. [PMID: 32664596 PMCID: PMC7397144 DOI: 10.3390/molecules25143178] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
In low-income populations, neglected diseases are the principal cause of mortality. Of these, leishmaniasis and malaria, being parasitic, protozoan infections, affect millions of people worldwide and are creating a public health problem. The present work evaluates the leishmanicidal and antiplasmodial action of a series of twelve p-coumaric acid derivatives. Of the tested derivatives, eight presented antiparasitic activities 1–3, 8–12. The hexyl p-coumarate derivative (9) (4.14 ± 0.55 μg/mL; selectivity index (SI) = 2.72) showed the highest leishmanicidal potency against the Leishmania braziliensis amastigote form. The results of the molecular docking study suggest that this compound inhibits aldehyde dehydrogenase (ALDH), mitogen-activated kinase protein (MPK4), and DNA topoisomerase 2 (TOP2), all of which are key enzymes in the development of Leishmania braziliensis. The data indicate that these enzymes interact via Van der Waals bonds, hydrophobic interactions, and hydrogen bonds with phenolic and aliphatic parts of this same compound. Of the other compounds analyzed, methyl p-coumarate (64.59 ± 2.89 μg/mL; IS = 0.1) demonstrated bioactivity against Plasmodium falciparum. The study reveals that esters presenting a p-coumarate substructure are promising for use in synthesis of derivatives with good antiparasitic profiles.
Collapse
Affiliation(s)
- Susiany P. Lopes
- PostGraduation Program in Technological Development and Innovation in Medicines, Federal University of Paraíba, João Pessoa CEP 58051-970, Brazil;
| | - Lina M. Yepes
- PECET-Facultad de Medicina, Universidad de Antioquia, Medellín Calle 70 # 52-21, Colombia; (L.M.Y.); (S.M.R.)
| | | | - Sara M. Robledo
- PECET-Facultad de Medicina, Universidad de Antioquia, Medellín Calle 70 # 52-21, Colombia; (L.M.Y.); (S.M.R.)
| | - Damião P. de Sousa
- PostGraduation Program in Technological Development and Innovation in Medicines, Federal University of Paraíba, João Pessoa CEP 58051-970, Brazil;
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa CEP 58051-970, Brazil
- Correspondence:
| |
Collapse
|