1
|
Hong Y, Wei R, Li C, Cai H, Chen E, Pan X, Zhang W. Establishment of virus-induced gene-silencing system in Juglans sigillata Dode and functional analysis of JsFLS2 and JsFLS4. Gene 2024; 913:148385. [PMID: 38493973 DOI: 10.1016/j.gene.2024.148385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Juglans sigillata Dode is one of the important tree species in southwest China, and it has significant economic and ecological value. However, there is still a lack of effective methods to identify the functional genes of J. sigillata. By verifying the model plant tobacco, the pTRV2::JsPDS vector was able to cause photobleaching. This study showed that photobleaching occurred 24 and 30 d after the silencing vector was infected with aseptic seedlings and fruits of J. sigillata, respectively. When the OD600 was 0.6, and the injection dose was 500 μL, the gene silencing efficiency of aseptic seedlings was the highest at 16.7 %, significantly better than other treatments. Moreover, when the OD600 was 0.8, and the injection dose was 500 μL, the gene silencing efficiency in the walnut fruit was the highest (20 %). In addition, the VIGS system was successfully used to silence JsFLS2 and JsFLS4 genes in J. sigillata. This study also showed that the flavonol content and gene expression in the treatment group were decreased compared to the control group. In addition, the proteins transcribed and translated from the JsFLS4 gene may have higher catalytic activity for dihydroquercetin. The above results indicate that the TRV-mediated VIGS system can be an ideal tool for studying J. sigillata gene function.
Collapse
Affiliation(s)
- Yanyang Hong
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China; Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China
| | - Rong Wei
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China; Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China
| | - Chunxiang Li
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China; Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China
| | - Hu Cai
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China; Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China
| | - Erjuan Chen
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China
| | - Xuejun Pan
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China; Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China.
| | - Wen'e Zhang
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China.
| |
Collapse
|
2
|
Chen Y, Xu N, Du L, Zhang J, Chen R, Zhu Q, Li W, Wu C, Peng G, Rao L, Wang Q. Light plays a critical role in the accumulation of chlorogenic acid in Lonicera macranthoides Hand.-Mazz. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:793-806. [PMID: 36848865 DOI: 10.1016/j.plaphy.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/23/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Light has important effects on plant metabolism. However, the relationship between the chlorogenic acid (CGA) content and light in plants remains unclear. Here, we investigated the effects of shading treatment on gene expression and CGA content in Lonicera macranthoides Hand.-Mazz. (LM), a widely used medicinal plant. A total of 1891 differentially expressed genes (DEGs) were obtained in flower buds and 819 in leaves in response to light in shading treatment compared to the control sample by RNA-Seq. After shading treatment, the content of CGA in LM leaves decreased significantly by 1.78-fold, the carotenoid content increased, and the soluble sugar and starch contents significantly decreased. WGCNA and the expression of related genes verified by qRT‒PCR revealed that CGA synthesis pathway enzyme genes form a co-expression network with genes for carbohydrate synthesis, photosynthesis, light signalling elements, and transcription factor genes (TFs) that affect the accumulation of CGA. Through a virus-induced gene silencing (VIGS) system and CGA assay in Nicotiana benthamiana (NB), we determined that downregulation of NbHY5 expression decreased the CGA content in NB leaves. In this study, we found that light provides energy and material for the accumulation of CGA in LM, and light affects the expression of CGA accumulation-related genes. Our results show that different light intensities have multiple effects on leaves and flower buds in LM and are able to coregulate LmHY5 expression and CGA synthesis.
Collapse
Affiliation(s)
- Yanchao Chen
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China
| | - Nan Xu
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China
| | - Lihua Du
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China
| | - Jinhao Zhang
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China
| | - Rong Chen
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China
| | - Qianfeng Zhu
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China
| | - Waichin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, PR China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha, PR China
| | - Guoping Peng
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China.
| | - Liqun Rao
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China.
| | - Qiming Wang
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
3
|
Zhang W, Qin W, Li H, Wu AM. Biosynthesis and Transport of Nucleotide Sugars for Plant Hemicellulose. FRONTIERS IN PLANT SCIENCE 2021; 12:723128. [PMID: 34868108 PMCID: PMC8636097 DOI: 10.3389/fpls.2021.723128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/22/2021] [Indexed: 05/13/2023]
Abstract
Hemicellulose is entangled with cellulose through hydrogen bonds and meanwhile acts as a bridge for the deposition of lignin monomer in the secondary wall. Therefore, hemicellulose plays a vital role in the utilization of cell wall biomass. Many advances in hemicellulose research have recently been made, and a large number of genes and their functions have been identified and verified. However, due to the diversity and complexity of hemicellulose, the biosynthesis and regulatory mechanisms are yet unknown. In this review, we summarized the types of plant hemicellulose, hemicellulose-specific nucleotide sugar substrates, key transporters, and biosynthesis pathways. This review will contribute to a better understanding of substrate-level regulation of hemicellulose synthesis.
Collapse
Affiliation(s)
- Wenjuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Wenqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Ai-min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Ai-min Wu,
| |
Collapse
|