1
|
Li C, Zhao W, Zhou H, Wu J, Huo Y, Jiang D, Ji X, Liu K, Xu Q, Li W. Functional Mutations in the microRNA-155 Promoter Modulate its Transcription Efficiency and Expression. Mol Biotechnol 2024; 66:2262-2272. [PMID: 37624482 DOI: 10.1007/s12033-023-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Limited research has been conducted on porcine miR-155 promoters, and previous study from our group have identified two haplotypes (TT and CC) in different pig breeds, each associated with five fully linked mutation sites within or near the miR-155 gene (Li et al. Dev Comp Immunol 39(1):110-116, 2013). In this study, the promoter region of porcine miR-155 was screened, and two important transcription factors, Foxp3 and RelA, were identified. The binding ability of Foxp3 protein was found to be affected by the first mutation site (A/C) using EMSA analysis. In vitro experiments revealed that the expression level of miR-155 was significantly higher in the C haplotype compared to the T haplotype. Additionally, northern blotting assays indicated that both the first mutation site (A/C) and the fourth mutation site (G/T) had a significant impact on miR-155 expression levels. These findings provide further insights into the transcriptional regulation of porcine miR-155 and identify crucial mutation sites that influence miR-155 expression. This knowledge can serve as a basis for identifying potential molecular markers associated with disease resistance in swine.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China.
| | - Wanxia Zhao
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Huijie Zhou
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Jiao Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Yong Huo
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Dongfeng Jiang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Xiangbo Ji
- Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Kun Liu
- Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Wantao Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| |
Collapse
|
2
|
Modulation of the long non-coding RNA Mir155hg by high, but not moderate, hydrostatic pressure in cartilage precursor cells. PLoS One 2022; 17:e0275682. [PMID: 36538560 PMCID: PMC9767356 DOI: 10.1371/journal.pone.0275682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease in older adults and is characterized by a gradual degradation of articular cartilage due to decreased cartilage matrix gene expression and increased expression of genes involved in protein degradation, apoptosis and inflammation. Due to the high water content of cartilage, one of the main physical stimuli sensed by chondrocytes is hydrostatic pressure. We previously showed that high pressure above 20 MPa induced gene expression changes in chondrocyte precursor cells similar to what is observed in OA. Micro-RNAs are small non-coding RNAs essential to many physiological and pathological process including OA. As the micro-RNA miR-155 has been found increased in OA chondrocytes, we investigated the effects of high pressure on the expression of the miR-155 host gene Mir155hg. The chondrocyte progenitor cell line ATDC5 was pressurized under hydrostatic pressure up to 25 MPa and the expression of Mir155hg or the resulting micro-RNAs were measured; pharmacological inhibitors were used to identify the signaling pathways involved in the regulation of Mir155hg. We found that Mir155hg is strongly and rapidly up-regulated by high, but not moderate, pressure in chondrocyte progenitor cells. This up-regulation likely involves the membrane channel pannexin-1 and several intracellular signaling molecules including PKC and Src. MiR-155-5p and -3p were also up-regulated by pressure though somewhat later than Mir155hg, and a set of known miR-155-5p target genes, including Ikbke, Smarca4 and Ywhae, was affected by pressure, suggesting that Mir155hg may have important roles in cartilage physiology.
Collapse
|
3
|
Ibrahim AHM, Megaley AFM, Sallam AMA. Variation in the ovine FOXP3 gene and its effect on growth traits in Egyptian Barki sheep. Anim Biotechnol 2021:1-7. [PMID: 34727013 DOI: 10.1080/10495398.2021.1996387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of the present study was to detect the FOXP3 gene polymorphisms in Barki sheep at a variable region covering exon 13, intron 13 and the coding sequence in exon 14 and to test the association of these polymorphisms with growth traits. 122 Barki lambs were phenotyped for various growth traits, viz., birth weight (BW), weaning weight (WW), pre-weaning daily gain in weight (ADG1), post-weaning daily gain in weight (ADG2) and marketing bodyweight (MW). The polymerase chain reaction - single-strand conformational polymorphisms (PCR-SSCP) and DNA sequencing methods were used to identify the genetic variants in the FOXP3 gene. The associations between the variation in FOXP3 gene and growth traits were tested using a general linear model. Two variants (F1 and F2 with gene frequencies of 0.64 and 0.36, respectively), and three genotypes (F1F1, F1F2 and F2F2 with frequencies of 0.37, 0.53 and 0.10, respectively) were detected. The association of FOXP3 genotype was significant (p < 0.05) with ADG2 and MW. It is concluded that FOXP3 genotype might be helpful for sheep breeders to produce fast-growing lambs. However, further studies are needed in a large population to confirm the association we found.
Collapse
Affiliation(s)
- Adel H M Ibrahim
- Department of Animal Breeding, Desert Research Center, Cairo, Egypt
| | | | - Ahmed M A Sallam
- Department of Animal Breeding, Desert Research Center, Cairo, Egypt
| |
Collapse
|