1
|
Iibushi J, Nozawa T, Toh H, Nakagawa I. ATG9B regulates bacterial internalization via actin rearrangement. iScience 2024; 27:109623. [PMID: 38706859 PMCID: PMC11066431 DOI: 10.1016/j.isci.2024.109623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/16/2024] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Invasive bacterial pathogens are internalized by host cells through endocytosis, which is regulated by a cascade of actin rearrangement signals triggered by host cell receptors or bacterial proteins delivered into host cells. However, the molecular mechanisms that mediate actin rearrangement to promote bacterial invasion are not fully understood. Here, we show that the autophagy-related (ATG) protein ATG9B regulates the internalization of various bacteria by controlling actin rearrangement. ATG knockout screening and knockdown experiments in HeLa cells identified ATG9B as a critical factor for bacterial internalization. In particular, cells with ATG9B knockdown exhibited an accumulation of actin filaments and phosphorylated LIM kinase and cofilin, suggesting that ATG9B is involved in actin depolymerization. Furthermore, the kinase activity of Unc-51-like autophagy-activating kinase 1 was found to regulate ATG9B localization and actin remodeling. These findings revealed a newly discovered function of ATG proteins in bacterial infection rather than autophagy-mediated immunity.
Collapse
Affiliation(s)
- Junpei Iibushi
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku 606-8501, Kyoto, Japan
| | - Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku 606-8501, Kyoto, Japan
| | - Hirotaka Toh
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku 606-8501, Kyoto, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku 606-8501, Kyoto, Japan
| |
Collapse
|
2
|
Mai J, He Q, Liu Y, Hou Y. Hyperoside Attenuates Sepsis-Induced Acute Lung Injury (ALI) through Autophagy Regulation and Inflammation Suppression. Mediators Inflamm 2023; 2023:1257615. [PMID: 37545738 PMCID: PMC10400302 DOI: 10.1155/2023/1257615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 05/21/2023] [Accepted: 06/22/2023] [Indexed: 08/08/2023] Open
Abstract
Background Sepsis mortality and morbidity are aggravated by acute lung injury (ALI) or acute respiratory distress syndrome. Published studies have discovered that hyperoside (HYP) has an anti-inflammatory and therapeutic effect in many diseases. However, whether HYP treatment can attenuate sepsis-induced ALI is still obscure. Methods In this study, a cecal ligation and puncture (CLP)-induced sepsis mouse model was constructed. The mouse lungs were harvested and assessed using proteomics, immunohistochemistry, immunofluorescence, and enzyme-linked immunosorbent assay for pro-inflammatory cytokines. Human lung microvascular endothelial cells (HLMVECs) were induced with lipopolysaccharide (LPS) for the in vitro model. Results The results showed that HYP treatment attenuated sepsis-induced ALI through an increased survival rate, decreased inflammatory factor expression, and lung tissue apoptosis. At the same time, HYP pretreatment restored angiogenesis in CLP-induced mouse lung tissues. Proteomics detection showed that Atg13 played a vital role in HYP-mediated protection against sepsis-induced ALI. The in vitro experiment showed HYP treatment attenuated LPS-induced HLMVEC damage by regulating Atg13-mediated autophagy. Inhibiting autophagy or silencing Atg13 reversed the protective effect of HYP against sepsis-induced ALI. Conclusion Taken together, we conclude that HYP attenuated sepsis-induced ALI by regulating autophagy and inhibiting inflammation.
Collapse
Affiliation(s)
- Jingyin Mai
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200071, China
| | - Qingqing He
- Hospital Infection Management Department, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200052, China
| | - Yuting Liu
- Cardiovascular Department, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200052, China
| | - Yuting Hou
- Department of Pharmacy, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200052, China
| |
Collapse
|
3
|
Abstract
Peste des petits ruminants virus (PPRV) infection leads to autophagy, and the molecular mechanisms behind this phenomenon are unclear. Here, we demonstrate that PPRV infection results in morphological changes of the endoplasmic reticulum (ER) and activation of activating transcription factor 6 (ATF6) of the ER stress unfolded protein response (UPR). Knockdown of ATF6 blocked the autophagy process, suggesting ATF6 is necessary for PPRV-mediated autophagy induction. Further study showed that PPRV infection upregulates expression of the ER-anchored adaptor protein stimulator of interferon genes (STING), which is well-known for its pivotal roles in restricting DNA viruses. Knockdown of STING suppressed ATF6 activation and autophagy induction, implying that STING functions upstream of ATF6 to induce autophagy. Moreover, the STING-mediated autophagy response originated from the cellular pattern recognition receptor melanoma differentiation-associated gene 5 (MDA5). The absence of MDA5 abolished the upregulation of STING and the activation of autophagy. The deficiency of autophagy-related genes (ATG) repressed the autophagy process and PPRV replication, while it had no effect on MDA5 or STING expression. Overall, our work revealed that MDA5 works upstream of STING to activate ATF6 to induce autophagy. IMPORTANCEPPRV infection induces cellular autophagy; however, the intracellular responses and signaling mechanisms that occur upon PPRV infection are obscure, and whether innate immune responses are linked with autophagy to regulate viral replication is largely unknown. Here, we uncovered that the innate immune sensor MDA5 initiated the signaling cascade by upregulating STING, which is best known for its role in anti-DNA virus infection by inducing interferon expression. We first provide evidence that STING regulates PPRV replication by activating the ATF6 pathway of unfolded protein responses (UPRs) to induce autophagy. Our results revealed that in addition to mediating responses to foreign DNA, STING can cross talk with MDA5 to regulate the cellular stress response and autophagy induced by RNA viruses; thus, STING works as an adaptor protein for cellular stress responses and innate immune responses. Modulation of STING represents a promising approach to control both DNA and RNA viruses.
Collapse
|
4
|
Research Progress on Emerging Viral Pathogens of Small Ruminants in China during the Last Decade. Viruses 2022; 14:v14061288. [PMID: 35746759 PMCID: PMC9228844 DOI: 10.3390/v14061288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022] Open
Abstract
China is the country with the largest number of domestic small ruminants in the world. Recently, the intensive and large-scale sheep/goat raising industry has developed rapidly, especially in nonpastoral regions. Frequent trading, allocation, and transportation result in the introduction and prevalence of new pathogens. Several new viral pathogens (peste des petits ruminants virus, caprine parainfluenza virus type 3, border disease virus, enzootic nasal tumor virus, caprine herpesvirus 1, enterovirus) have been circulating and identified in China, which has attracted extensive attention from both farmers and researchers. During the last decade, studies examining the etiology, epidemiology, pathogenesis, diagnostic methods, and vaccines for these emerging viruses have been conducted. In this review, we focus on the latest findings and research progress related to these newly identified viral pathogens in China, discuss the current situation and problems, and propose research directions and prevention strategies for different diseases in the future. Our aim is to provide comprehensive and valuable information for the prevention and control of these emerging viruses and highlight the importance of surveillance of emerging or re-emerging viruses.
Collapse
|
5
|
Infectious Bronchitis Virus Nsp14 Degrades JAK1 to Inhibit the JAK-STAT Signaling Pathway in HD11 Cells. Viruses 2022; 14:v14051045. [PMID: 35632786 PMCID: PMC9146749 DOI: 10.3390/v14051045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
Coronaviruses (CoVs) are RNA viruses that can infect a wide range of animals, including humans, and cause severe respiratory and gastrointestinal disease. The Gammacoronavirus avian infectious bronchitis virus (IBV) causes acute and contagious diseases in chickens, leading to severe economic losses. Nonstructural protein 14 (Nsp14) is a nonstructural protein encoded by the CoV genome. This protein has a regulatory role in viral virulence and replication. However, the function and mechanism of IBV Nsp14 in regulating the host’s innate immune response remain unclear. Here we report that IBV Nsp14 was a JAK-STAT signaling pathway antagonist in chicken macrophage (HD11) cells. In these cells, Nsp14 protein overexpression blocked IBV suppression induced by exogenous chIFN-γ treatment. Meanwhile, Nsp14 remarkably reduced interferon-gamma-activated sequence (GAS) promoter activation and chIFN-γ-induced interferon-stimulated gene expression. Nsp14 impaired the nuclear translocation of chSTAT1. Furthermore, Nsp14 interacted with Janus kinase 1 (JAK1) to degrade JAK1 via the autophagy pathway, thereby preventing the activation of the JAK-STAT signaling pathway and facilitating viral replication. These results indicated a novel mechanism by which IBV inhibits the host antiviral response and provide new insights into the selection of antiviral targets against CoV.
Collapse
|
6
|
Jiang H, Kan X, Ding C, Sun Y. The Multi-Faceted Role of Autophagy During Animal Virus Infection. Front Cell Infect Microbiol 2022; 12:858953. [PMID: 35402295 PMCID: PMC8990858 DOI: 10.3389/fcimb.2022.858953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/01/2022] [Indexed: 01/17/2023] Open
Abstract
Autophagy is a process of degradation to maintain cellular homeostatic by lysosomes, which ensures cellular survival under various stress conditions, including nutrient deficiency, hypoxia, high temperature, and pathogenic infection. Xenophagy, a form of selective autophagy, serves as a defense mechanism against multiple intracellular pathogen types, such as viruses, bacteria, and parasites. Recent years have seen a growing list of animal viruses with autophagy machinery. Although the relationship between autophagy and human viruses has been widely summarized, little attention has been paid to the role of this cellular function in the veterinary field, especially today, with the growth of serious zoonotic diseases. The mechanisms of the same virus inducing autophagy in different species, or different viruses inducing autophagy in the same species have not been clarified. In this review, we examine the role of autophagy in important animal viral infectious diseases and discuss the regulation mechanisms of different animal viruses to provide a potential theoretical basis for therapeutic strategies, such as targets of new vaccine development or drugs, to improve industrial production in farming.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
| | - Xianjin Kan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- *Correspondence: Yingjie Sun, ; Chan Ding,
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
- *Correspondence: Yingjie Sun, ; Chan Ding,
| |
Collapse
|
7
|
Li Y, Wang R, Wang H, Pu F, Feng X, Jin L, Ma Z, Ma XX. Codon Usage Bias in Autophagy-Related Gene 13 in Eukaryotes: Uncovering the Genetic Divergence by the Interplay Between Nucleotides and Codon Usages. Front Cell Infect Microbiol 2021; 11:771010. [PMID: 34804999 PMCID: PMC8602353 DOI: 10.3389/fcimb.2021.771010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Synonymous codon usage bias is a universal characteristic of genomes across various organisms. Autophagy-related gene 13 (atg13) is one essential gene for autophagy initiation, yet the evolutionary trends of the atg13 gene at the usages of nucleotide and synonymous codon remains unexplored. According to phylogenetic analyses for the atg13 gene of 226 eukaryotic organisms at the nucleotide and amino acid levels, it is clear that their nucleotide usages exhibit more genetic information than their amino acid usages. Specifically, the overall nucleotide usage bias quantified by information entropy reflected that the usage biases at the first and second codon positions were stronger than those at the third position of the atg13 genes. Furthermore, the bias level of nucleotide ‘G’ usage is highest, while that of nucleotide ‘C’ usage is lowest in the atg13 genes. On top of that, genetic features represented by synonymous codon usage exhibits a species-specific pattern on the evolution of the atg13 genes to some extent. Interestingly, the codon usages of atg13 genes in the ancestor animals (Latimeria chalumnae, Petromyzon marinus, and Rhinatrema bivittatum) are strongly influenced by mutation pressure from nucleotide composition constraint. However, the distributions of nucleotide composition at different codon positions in the atg13 gene display that natural selection still dominates atg13 codon usages during organisms’ evolution.
Collapse
Affiliation(s)
- Yicong Li
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Rui Wang
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Huihui Wang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Feiyang Pu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xili Feng
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Li Jin
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiao-Xia Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
8
|
Jin L, Li Y, Pu F, Wang H, Zhang D, Bai J, Shang Y, Ma Z, Ma XX. Inhibiting pyrimidine biosynthesis impairs Peste des Petits Ruminants Virus replication through depletion of nucleoside pools and activation of cellular immunity. Vet Microbiol 2021; 260:109186. [PMID: 34333402 DOI: 10.1016/j.vetmic.2021.109186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Replication of peste des petits ruminants virus (PPRV) strongly depends on the cellular environment and resources of host cells including nucleoside pool. Thus, enzymes involved in nucleoside biosynthesis (such as pyrimidine biosynthesis pathway) are regarded as attractive targets for antiviral drug development. Here, we demonstrate that brequinar (BQR) and leflunomide (LFM) which are two specific inhibitors of DHODH enzyme and 6-azauracil (6-AU) which is an ODase enzyme inhibitor robustly inhibit PPRV replication in HEK293T cell line as well as in peripheral blood mononuclear cells isolated from goat. We further demonstrate that these agents exert anti-PPRV activity via the depletion of purimidine nucleotide. Interestingly, these inhibitors can trigger the transcription of antiviral interferon-stimulated genes (ISGs). However, the induction of ISGs is largely independent of the classical JAK-STAT pathway. Combination of BQR with interferons (IFNs) exerts enhanced ISG induction and anti-PPRV activity. Taken together, this study reveals an unconventional novel mechanism of crosstalk between nucleotide biosynthesis pathways and cellular antiviral immunity in inhibiting PPRV replication. In conclusion, targeting pyrimidine biosynthesis represents a potential strategy for developing antiviral strategies against PPRV.
Collapse
Affiliation(s)
- Li Jin
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yicong Li
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Feiyang Pu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Huihui Wang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Derong Zhang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jialin Bai
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiao-Xia Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| |
Collapse
|