1
|
Strzałka A, Mikołajczyk J, Kowalska K, Skurczyński M, Holmes NA, Jakimowicz D. The role of two major nucleoid-associated proteins in Streptomyces, HupA and HupS, in stress survival and gene expression regulation. Microb Cell Fact 2024; 23:275. [PMID: 39402545 PMCID: PMC11472566 DOI: 10.1186/s12934-024-02549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Streptomyces are sporulating soil bacteria with enormous potential for secondary metabolites biosynthesis. Regulatory networks governing Streptomyces coelicolor differentiation and secondary metabolites production are complex and composed of numerous regulatory proteins ranging from specific transcriptional regulators to sigma factors. Nucleoid-associated proteins (NAPs) are also believed to contribute to regulation of gene expression. Upon DNA binding, these proteins impact DNA accessibility. Among NAPs, HU proteins are the most widespread and abundant. Unlike other bacteria, the Streptomyces genomes encode two HU homologs: HupA and HupS, which differ in structure and expression profile. However, it remained unclear whether the functions of both homologs overlap. Additionally, although both proteins have been shown to bind the chromosome, their rolesin transcriptional regulation have not been studied so far. RESULTS In this study, we explore whether HupA and HupS affect S. coelicolor growth under optimal and stressful conditions and how they control global gene expression. By testing both single and double mutants, we address the question of the complementarity of both HU homologs. We show that the lack of both hup genes led to growth and sporulation inhibition, as well as increased spore fragility. We also demonstrate that both HU homologs can be considered global transcriptional regulators, influencing expression of between 2% and 6% genes encoding among others proteins linked to global regulatory networks and secondary metabolite production. CONCLUSIONS We identify the independent HupA and HupS regulons, as well as genes under the control of both HupA and HupS proteins. Our data indicate a partial overlap between the functions of HupA and HupS during S. coelicolor growth. HupA and HupS play important roles in Streptomyces regulatory network and impact secondary metabolite clusters.
Collapse
Affiliation(s)
- Agnieszka Strzałka
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| | - Jakub Mikołajczyk
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Klaudia Kowalska
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Michał Skurczyński
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Neil A Holmes
- The John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Dagmara Jakimowicz
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
2
|
Nakamura R, Takahashi Y, Tachibana S, Terada A, Suzuki K, Kondo K, Tozawa Y, Hihara Y. Partner-switching components PmgA and Ssr1600 regulate high-light acclimation in Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2024; 196:621-633. [PMID: 38833609 DOI: 10.1093/plphys/kiae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024]
Abstract
Photomixotrophic growth A (PmgA) is a pleiotropic regulator essential for growth under photomixotrophic and prolonged high-light (HL) conditions in the cyanobacterium Synechocystis sp. PCC 6803. The overall similarity with the antisigma factor of the bacterial partner-switching system indicates that PmgA exerts a regulatory function via phosphorylation of its target proteins. In this study, we performed an in vitro phosphorylation assay and protein-protein interaction analysis and found that PmgA interacts with 4 antisigma antagonist homologs, Ssr1600, Slr1856, Slr1859, and Slr1912, but specifically phosphorylates Ssr1600. Phenotypic analyses using the set of gene disruption and overexpression strains of pmgA and ssr1600 revealed that phosphorylation by PmgA is essential for the accumulation of Ssr1600 protein in vivo. The ssr1600-disrupted mutant showed similar phenotypes as those previously reported for the pmgA-disrupted mutant, namely, no obvious phenotype just after the shift to HL, but higher chlorophyll content, 5-aminolevulinic acid synthesis activity, and psaAB transcript levels than those in the wild type after 6 h. These findings indicate that the phosphorylated form of Ssr1600 works as the output of the partner-switching system to coordinately repress chlorophyll biosynthesis and accumulation of photosystem I during HL acclimation.
Collapse
Affiliation(s)
- Riku Nakamura
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama 338-8570, Japan
| | - Yuji Takahashi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama 338-8570, Japan
| | - Shogo Tachibana
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama 338-8570, Japan
| | - Arisa Terada
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama 338-8570, Japan
| | - Kakeru Suzuki
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama 338-8570, Japan
| | - Kumika Kondo
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama 338-8570, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama 338-8570, Japan
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama 338-8570, Japan
| |
Collapse
|
3
|
Schlüter L, Busche T, Bondzio L, Hütten A, Niehaus K, Schneiker-Bekel S, Pühler A, Kalinowski J. Sigma Factor Engineering in Actinoplanes sp. SE50/110: Expression of the Alternative Sigma Factor Gene ACSP50_0507 (σH As) Enhances Acarbose Yield and Alters Cell Morphology. Microorganisms 2024; 12:1241. [PMID: 38930623 PMCID: PMC11205660 DOI: 10.3390/microorganisms12061241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Sigma factors are transcriptional regulators that are part of complex regulatory networks for major cellular processes, as well as for growth phase-dependent regulation and stress response. Actinoplanes sp. SE50/110 is the natural producer of acarbose, an α-glucosidase inhibitor that is used in diabetes type 2 treatment. Acarbose biosynthesis is dependent on growth, making sigma factor engineering a promising tool for metabolic engineering. ACSP50_0507 is a homolog of the developmental and osmotic-stress-regulating Streptomyces coelicolor σHSc. Therefore, the protein encoded by ACSP50_0507 was named σHAs. Here, an Actinoplanes sp. SE50/110 expression strain for the alternative sigma factor gene ACSP50_0507 (sigHAs) achieved a two-fold increased acarbose yield with acarbose production extending into the stationary growth phase. Transcriptome sequencing revealed upregulation of acarbose biosynthesis genes during growth and at the late stationary growth phase. Genes that are transcriptionally activated by σHAs frequently code for secreted or membrane-associated proteins. This is also mirrored by the severely affected cell morphology, with hyperbranching, deformed and compartmentalized hyphae. The dehydrated cell morphology and upregulation of further genes point to a putative involvement in osmotic stress response, similar to its S. coelicolor homolog. The DNA-binding motif of σHAs was determined based on transcriptome sequencing data and shows high motif similarity to that of its homolog. The motif was confirmed by in vitro binding of recombinantly expressed σHAs to the upstream sequence of a strongly upregulated gene. Autoregulation of σHAs was observed, and binding to its own gene promoter region was also confirmed.
Collapse
Affiliation(s)
- Laura Schlüter
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (L.S.); (S.S.-B.)
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany;
- Medical School East Westphalia-Lippe, Bielefeld University, 33594 Bielefeld, Germany
| | - Laila Bondzio
- Faculty of Physics, Bielefeld University, 33594 Bielefeld, Germany; (L.B.); (A.H.)
| | - Andreas Hütten
- Faculty of Physics, Bielefeld University, 33594 Bielefeld, Germany; (L.B.); (A.H.)
| | - Karsten Niehaus
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, 33594 Bielefeld, Germany;
| | - Susanne Schneiker-Bekel
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (L.S.); (S.S.-B.)
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany;
| | - Alfred Pühler
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany;
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (L.S.); (S.S.-B.)
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany;
| |
Collapse
|
4
|
Salinas P, Bibak S, Cantos R, Tremiño L, Jerez C, Mata-Balaguer T, Contreras A. Studies on the PII-PipX-NtcA Regulatory Axis of Cyanobacteria Provide Novel Insights into the Advantages and Limitations of Two-Hybrid Systems for Protein Interactions. Int J Mol Sci 2024; 25:5429. [PMID: 38791467 PMCID: PMC11121479 DOI: 10.3390/ijms25105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Yeast two-hybrid approaches, which are based on fusion proteins that must co-localise to the nucleus to reconstitute the transcriptional activity of GAL4, have greatly contributed to our understanding of the nitrogen interaction network of cyanobacteria, the main hubs of which are the trimeric PII and the monomeric PipX regulators. The bacterial two-hybrid system, based on the reconstitution in the E. coli cytoplasm of the adenylate cyclase of Bordetella pertussis, should provide a relatively faster and presumably more physiological assay for cyanobacterial proteins than the yeast system. Here, we used the bacterial two-hybrid system to gain additional insights into the cyanobacterial PipX interaction network while simultaneously assessing the advantages and limitations of the two most popular two-hybrid systems. A comprehensive mutational analysis of PipX and bacterial two-hybrid assays were performed to compare the outcomes between yeast and bacterial systems. We detected interactions that were previously recorded in the yeast two-hybrid system as negative, as well as a "false positive", the self-interaction of PipX, which is rather an indirect interaction that is dependent on PII homologues from the E. coli host, a result confirmed by Western blot analysis with relevant PipX variants. This is, to our knowledge, the first report of the molecular basis of a false positive in the bacterial two-hybrid system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Asunción Contreras
- Departamento. de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (P.S.); (S.B.); (R.C.); (L.T.); (C.J.); (T.M.-B.)
| |
Collapse
|
5
|
Clara L, David C, Laila S, Virginie R, Marie-Joelle V. Comparative Proteomic Analysis of Transcriptional and Regulatory Proteins Abundances in S. lividans and S. coelicolor Suggests a Link between Various Stresses and Antibiotic Production. Int J Mol Sci 2022; 23:ijms232314792. [PMID: 36499130 PMCID: PMC9739823 DOI: 10.3390/ijms232314792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Streptomyces coelicolor and Streptomyces lividans constitute model strains to study the regulation of antibiotics biosynthesis in Streptomyces species since these closely related strains possess the same pathways directing the biosynthesis of various antibiotics but only S. coelicolor produces them. To get a better understanding of the origin of the contrasted abilities of these strains to produce bioactive specialized metabolites, these strains were grown in conditions of phosphate limitation or proficiency and a comparative analysis of their transcriptional/regulatory proteins was carried out. The abundance of the vast majority of the 355 proteins detected greatly differed between these two strains and responded differently to phosphate availability. This study confirmed, consistently with previous studies, that S. coelicolor suffers from nitrogen stress. This stress likely triggers the degradation of the nitrogen-rich peptidoglycan cell wall in order to recycle nitrogen present in its constituents, resulting in cell wall stress. When an altered cell wall is unable to fulfill its osmo-protective function, the bacteria also suffer from osmotic stress. This study thus revealed that these three stresses are intimately linked in S. coelicolor. The aggravation of these stresses leading to an increase of antibiotic biosynthesis, the connection between these stresses, and antibiotic production are discussed.
Collapse
Affiliation(s)
- Lejeune Clara
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Cornu David
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Sago Laila
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Redeker Virginie
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Laboratory of Neurodegenerative Diseases, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and Centre National de la Recherche Scientifique (CNRS), Molecular Imaging Center (MIRCen), Institut François Jacob, Université Paris-Saclay, 92260 Fontenay-aux-Roses, France
| | - Virolle Marie-Joelle
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Correspondence:
| |
Collapse
|
6
|
Otani H, Mouncey NJ. RIViT-seq enables systematic identification of regulons of transcriptional machineries. Nat Commun 2022; 13:3502. [PMID: 35715393 PMCID: PMC9205884 DOI: 10.1038/s41467-022-31191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/06/2022] [Indexed: 11/08/2022] Open
Abstract
Transcriptional regulation is a critical process to ensure expression of genes necessary for growth and survival in diverse environments. Transcription is mediated by multiple transcription factors including activators, repressors and sigma factors. Accurate computational prediction of the regulon of target genes for transcription factors is difficult and experimental identification is laborious and not scalable. Here, we demonstrate regulon identification by in vitro transcription-sequencing (RIViT-seq) that enables systematic identification of regulons of transcription factors by combining an in vitro transcription assay and RNA-sequencing. Using this technology, target genes of 11 sigma factors were identified in Streptomyces coelicolor A3(2). The RIViT-seq data expands the transcriptional regulatory network in this bacterium, discovering regulatory cascades and crosstalk between sigma factors. Implementation of RIViT-seq with other transcription factors and in other organisms will improve our understanding of transcriptional regulatory networks across biology.
Collapse
Affiliation(s)
- Hiroshi Otani
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Nigel J Mouncey
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
7
|
Sevcikova B, Rezuchova B, Mazurakova V, Homerova D, Novakova R, Feckova L, Kormanec J. Cross-Recognition of Promoters by the Nine SigB Homologues Present in Streptomyces coelicolor A3(2). Int J Mol Sci 2021; 22:ijms22157849. [PMID: 34360615 PMCID: PMC8346170 DOI: 10.3390/ijms22157849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
In contrast to Bacillus subtilis, Streptomyces coelicolor A3(2) contains nine homologues of stress response sigma factor SigB with a major role in differentiation and osmotic stress response. The aim of this study was to further characterize these SigB homologues. We previously established a two-plasmid system to identify promoters recognized by sigma factors and used it to identify promoters recognized by the three SigB homologues, SigF, SigG, and SigH from S. coelicolor A3(2). Here, we used this system to identify 14 promoters recognized by SigB. The promoters were verified in vivo in S. coelicolor A3(2) under osmotic stress conditions in sigB and sigH operon mutants, indicating some cross-recognition of these promoters by these two SigB homologues. This two-plasmid system was used to examine the recognition of all identified SigB-, SigF-, SigG-, and SigH-dependent promoters with all nine SigB homologues. The results confirmed this cross-recognition. Almost all 24 investigated promoters were recognized by two or more SigB homologues and data suggested some distinguishing groups of promoters recognized by these sigma factors. However, analysis of the promoters did not reveal any specific sequence characteristics for these recognition groups. All promoters showed high similarity in the -35 and -10 regions. Immunoblot analysis revealed the presence of SigB under osmotic stress conditions and SigH during morphological differentiation. Together with the phenotypic analysis of sigB and sigH operon mutants in S. coelicolor A3(2), the results suggest a dominant role for SigB in the osmotic stress response and a dual role for SigH in the osmotic stress response and morphological differentiation. These data suggest a complex regulation of the osmotic stress response in relation to morphological differentiation in S. coelicolor A3(2).
Collapse
|