1
|
Li J, Huang X, Luo L, Sun J, Guo Q, Yang X, Zhang C, Ni B. The role of p53 in male infertility. Front Endocrinol (Lausanne) 2024; 15:1457985. [PMID: 39469578 PMCID: PMC11513281 DOI: 10.3389/fendo.2024.1457985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The tumor suppressor p53 is a transcription factor involved in a variety of crucial cellular functions, including cell cycle arrest, DNA repair and apoptosis. Still, a growing number of studies indicate that p53 plays multiple roles in spermatogenesis, as well as in the occurrence and development of male infertility. The representative functions of p53 in spermatogenesis include the proliferation of spermatogonial stem cells (SSCs), spermatogonial differentiation, spontaneous apoptosis, and DNA damage repair. p53 is involved in various male infertility-related diseases. Innovative therapeutic strategies targeting p53 have emerged in recent years. This review focuses on the role of p53 in spermatogenesis and male infertility and analyses the possible underlying mechanism involved. All these conclusions may provide a new perspective on drug intervention targeting p53 for male infertility treatment.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Huang
- Department of Human Resource, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Luo
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jialin Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xue Yang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuanzhou Zhang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Beibei Ni
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Meng R, Du X, Fu Y, Wang F, Yang Y, Guo F, Wang X, Ge K, Yang J, Liang X, Guo H, Wang W, Liu X, Zhang H. Short Chain Chlorinated Paraffins Impaired Spermatogenesis Process in Mice via Inhibiting α-KG/TET Enzyme Activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17270-17282. [PMID: 39295530 DOI: 10.1021/acs.est.4c05895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Short chain chlorinated paraffins (SCCPs) are widely found in various environmental media and potentially threaten human health. However, the toxicity mechanisms of SCCPs to the male reproductive system remain unclear. In this study, male BALB/c mice and GC-1 cells were used to investigate the reproductive toxicity of SCCPs and their molecular mechanisms. SCCPs decreased the content of the tricarboxylic acid cycle intermediate α-KG in testicular cells, thus inhibiting the activity of the DNA demethylase TET enzyme and resulting in an increase in the overall methylation level of the testicular genome. Correspondingly, the promoter demethylation and expression of spermatogenesis-related genes Rbm46, Sohlh1, Kit, and Dmrt1 were significantly reduced by SCCPs, which further prevented the transformation of spermatogonia to spermatocytes and reduced sperm quality in mice. The in vitro experiments suggested that the TGFβ pathway activated by oxidative stress might be an essential reason for inhibiting the tricarboxylic acid cycle and the reduction of α-KG content in testicular cells induced by SCCPs. Overall, this study reveals a novel metabolic regulatory mechanism of SCCPs-induced spermatogenesis disorders, which provides an essential theoretical basis for the prevention of reproductive toxicity of SCCPs.
Collapse
Affiliation(s)
- Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yu Fu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Fufang Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yingfei Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Feiyang Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan 450001, China
| | - Wenjun Wang
- School of Nursing, Jining Medical University, Jining, Shandong 272000, China
| | - Xiaodong Liu
- The Central Laboratory of Beijing Institute of Occupational Disease Prevention and Treatment, Beijing 100093, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
3
|
Margiana R, Pakpahan C, Pangestu M. A systematic review of retinoic acid in the journey of spermatogonium to spermatozoa: From basic to clinical application. F1000Res 2022; 11:552. [PMID: 35967975 PMCID: PMC9345263 DOI: 10.12688/f1000research.110510.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Retinoic acid plays an essential role in testicular development and functions, especially spermatogenesis. We have reviewed the role of retinoic acid from basic (molecular) to clinical application. Methods: A search was conducted in the online database including PubMed, Google Scholar, and Scopus for English studies published in the last eight years about this issue. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in assessing the studies we are going to investigate. Results: Studies indicated that retinoic acid plays an essential role during pluripotent stem cell migration and lineage commitment, cell differentiation, apoptosis, stem cell number regulation, and maturation arrest in spermatogenic cells. Retinoic acid can also affect related protein expression and signaling pathways at different stages of spermatogenesis. Four studies have applied retinoic acid to humans, all of them in the single-arm observational study. The results look promising but need further research with more controlled study methods, randomization, and large samples. Conclusions: This current systematic review emphasizes a novel retinoic acid mechanism that has not been well described in the literature previously on its functions during the first seven days of spermatogenesis, leading to new directions or explanations of male infertility cause and treatments as a part of reproductive health care.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Study Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Cennikon Pakpahan
- Andrology Study Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mulyoto Pangestu
- Education Program in Reproduction and Development (EPRD), Department of Obstetrics and Gynaecology, Monash Clinical School, Monash University, Clayton, Australia
| |
Collapse
|
4
|
Wang JM, Li ZF, Yang WX, Tan FQ. Follicle-stimulating hormone signaling in Sertoli cells: a licence to the early stages of spermatogenesis. Reprod Biol Endocrinol 2022; 20:97. [PMID: 35780146 PMCID: PMC9250200 DOI: 10.1186/s12958-022-00971-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Follicle-stimulating hormone signaling is essential for the initiation and early stages of spermatogenesis. Follicle-stimulating hormone receptor is exclusively expressed in Sertoli cells. As the only type of somatic cell in the seminiferous tubule, Sertoli cells regulate spermatogenesis not only by controlling their own number and function but also through paracrine actions to nourish germ cells surrounded by Sertoli cells. After follicle-stimulating hormone binds to its receptor and activates the follicle-stimulating hormone signaling pathway, follicle-stimulating hormone signaling will establish a normal Sertoli cell number and promote their differentiation. Spermatogonia pool maintenance, spermatogonia differentiation and their entry into meiosis are also positively regulated by follicle-stimulating hormone signaling. In addition, follicle-stimulating hormone signaling regulates germ cell survival and limits their apoptosis. Our review summarizes the aforementioned functions of follicle-stimulating hormone signaling in Sertoli cells. We also describe the clinical potential of follicle-stimulating hormone treatment in male patients with infertility. Furthermore, our review may be helpful for developing better therapies for treating patients with dysfunctional follicle-stimulating hormone signaling in Sertoli cells.
Collapse
Affiliation(s)
- Jia-Ming Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen-Fang Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|