1
|
Xu D, Zhu W, Wu Y, Wei S, Shu G, Tian Y, Du X, Tang J, Feng Y, Wu G, Han X, Zhao X. Whole-genome sequencing revealed genetic diversity, structure and patterns of selection in Guizhou indigenous chickens. BMC Genomics 2023; 24:570. [PMID: 37749517 PMCID: PMC10521574 DOI: 10.1186/s12864-023-09621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND The eight phenotypically distinguishable indigenous chicken breeds in Guizhou province of China are great resources for high-quality development of the poultry industry in China. However, their full value and potential have yet to be understood in depth. To illustrate the genetic diversity, the relationship and population structure, and the genetic variation patterns shaped by selection in Guizhou indigenous chickens, we performed a genome-wide analysis of 240 chickens from 8 phenotypically and geographically representative Guizhou chicken breeds and 60 chickens from 2 commercial chicken breeds (one broiler and one layer), together with 10 red jungle fowls (RJF) genomes available from previous studies. RESULTS The results obtained in this present study showed that Guizhou chicken breed populations harbored higher genetic diversity as compared to commercial chicken breeds, however unequal polymorphisms were present within Guizhou indigenous chicken breeds. The results from the population structure analysis markedly reflected the breeding history and the geographical distribution of Guizhou indigenous chickens, whereas, some breeds with complex genetic structure were ungrouped into one cluster. In addition, we confirmed mutual introgression within Guizhou indigenous chicken breeds and from commercial chicken breeds. Furthermore, selective sweep analysis revealed candidate genes which were associated with specific and common phenotypic characteristics evolved rapidly after domestication of Guizhou local chicken breeds and economic traits such as egg production performance, growth performance, and body size. CONCLUSION Taken together, the results obtained from the comprehensive analysis of the genetic diversity, genetic relationships and population structures in this study showed that Guizhou indigenous chicken breeds harbor great potential for commercial utilization, however effective conservation measures are currently needed. Additionally, the present study drew a genome-wide selection signature draft for eight Guizhou indigenous chicken breeds and two commercial breeds, as well as established a resource that can be exploited in chicken breeding programs to manipulate the genes associated with desired phenotypes. Therefore, this study will provide an essential genetic basis for further research, conservation, and breeding of Guizhou indigenous chickens.
Collapse
Affiliation(s)
- Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Wei Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Youhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Shuo Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Jigao Tang
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Yulong Feng
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Gemin Wu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Xue Han
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China.
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China.
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China.
| |
Collapse
|
2
|
Huang S, Lin L, Wang S, Ding W, Zhang C, Shaukat A, Xu B, Yue K, Zhang C, Liu F. Total Flavonoids of Rhizoma Drynariae Mitigates Aflatoxin B1-Induced Liver Toxicity in Chickens via Microbiota-Gut-Liver Axis Interaction Mechanisms. Antioxidants (Basel) 2023; 12:antiox12040819. [PMID: 37107194 PMCID: PMC10134996 DOI: 10.3390/antiox12040819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a common mycotoxin that widely occurs in feed and has severe hepatotoxic effects both in humans and animals. Total flavonoids of Rhizoma Drynaria (TFRD), a traditional Chinese medicinal herb, have multiple biological activities and potential hepatoprotective activity. This study investigated the protective effects and potential mechanisms of TFRD against AFB1-induced liver injury. The results revealed that supplementation with TFRD markedly lessened broiler intestinal permeability by increasing the expression of intestinal tight junction proteins, as well as correcting the changes in gut microbiota and liver damage induced by AFB1. Metabolomics analysis revealed that the alterations in plasma metabolites, especially taurolithocholic acid, were significantly improved by TFRD treatment in AFB1-exposed chickens. In addition, these metabolites were closely associated with [Ruminococcus], ACC, and GPX1, indicating that AFB1 may cause liver injury by inducing bile acid metabolism involving the microbiota–gut–liver axis. We further found that TFRD treatment markedly suppressed oxidative stress and hepatic lipid deposition, increased plasma glutathione (GSH) concentrations, and reversed hepatic ferroptosis gene expression. Collectively, these findings indicate that ferroptosis might contribute to the hepatotoxicity of AFB1-exposed chickens through the microbiota–gut–liver axis interaction mechanisms; furthermore, TFRD was confirmed as an herbal extract that could potentially antagonize mycotoxins detrimental effects.
Collapse
|
3
|
Wang D, Li X, Zhang P, Cao Y, Zhang K, Qin P, Guo Y, Li Z, Tian Y, Kang X, Liu X, Li H. ELOVL gene family plays a virtual role in response to breeding selection and lipid deposition in different tissues in chicken (Gallus gallus). BMC Genomics 2022; 23:705. [PMID: 36253734 PMCID: PMC9575239 DOI: 10.1186/s12864-022-08932-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Background Elongases of very long chain fatty acids (ELOVLs), a family of first rate-limiting enzymes in the synthesis of long-chain fatty acids, play an essential role in the biosynthesis of complex lipids. Disrupting any of ELOVLs affects normal growth and development in mammals. Genetic variations in ELOVLs are associated with backfat or intramuscular fatty acid composition in livestock. However, the effects of ELOVL gene family on breeding selection and lipid deposition in different tissues are still unknown in chickens. Results Genetic variation patterns and genetic associations analysis showed that the genetic variations of ELOVL genes were contributed to breeding selection of commercial varieties in chicken, and 14 SNPs in ELOVL2-6 were associated with body weight, carcass or fat deposition traits. Especially, one SNP rs17631638T > C in the promoter of ELOVL3 was associated with intramuscular fat content (IMF), and its allele frequency was significantly higher in native and layer breeds compared to that in commercial broiler breeds. Quantitative real-time PCR (qRT-PCR) determined that the ELOVL3 expressions in pectoralis were affected by the genotypes of rs17631638T > C. In addition, the transcription levels of ELOVL genes except ELOVL5 were regulated by estrogen in chicken liver and hypothalamus with different regulatory pathways. The expression levels of ELOVL1-6 in hypothalamus, liver, abdominal fat and pectoralis were correlated with abdominal fat weight, abdominal fat percentage, liver lipid content and IMF. Noteworthily, expression of ELOVL3 in pectoralis was highly positively correlated with IMF and glycerophospholipid molecules, including phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl glycerol and phospholipids inositol, rich in ω-3 and ω-6 long-chain unsaturated fatty acids, suggesting ELOVL3 could contribute to intramuscular fat deposition by increasing the proportion of long-chain unsaturated glycerophospholipid molecules in pectoralis. Conclusions In summary, we demonstrated the genetic contribution of ELOVL gene family to breeding selection for specialized varieties, and revealed the expression regulation of ELOVL genes and their potential roles in regulating lipid deposition in different tissues. This study provides new insights into understanding the functions of ELOVL family on avian growth and lipid deposition in different tissues and the genetic variation in ELOVL3 may aid the marker-assisted selection of meat quality in chicken. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08932-8.
Collapse
Affiliation(s)
- Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinyan Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Panpan Zhang
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou, 450002, China
| | - Yuzhu Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ke Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Panpan Qin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China. .,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China. .,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450046, China.
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China. .,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China. .,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Liu Y, Liang S, Wang K, Zi X, Zhang R, Wang G, Kang J, Li Z, Dou T, Ge C. Physicochemical, Nutritional Properties and Metabolomics Analysis Fat Deposition Mechanism of Chahua Chicken No. 2 and Yao Chicken. Genes (Basel) 2022; 13:1358. [PMID: 36011269 PMCID: PMC9407069 DOI: 10.3390/genes13081358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Poultry is an important dietary source of animal protein, accounting for approximately 30% of global meat consumption. Because of its low price, low fat and cholesterol content, and no religious restrictions, chicken is considered a widely available healthy meat. Chahua chicken No. 2 is a synthetic breed of Chahua chicken derived from five generations of specialized strain breeding. In this study, Chahua chicken No. 2 (CH) and Yao chicken (Y) were used as the research objects to compare the differences in physicochemical and nutritional indicators of meat quality between the two chicken breeds, and metabolomics was used to analyze the differences in metabolites and lipid metabolism pathways and to explore the expression of genes involved in adipogenesis. The physical index and nutritional value of CH are better than that of Y, and the chemical index of Y is better than that of CH. However, the chemical index results of CH are also within the normal theoretical value range. Comprehensive comparison shows that the meat quality of CH is relatively good. Metabolomics analysis showed that CH and Y had 85 different metabolites, and the differential metabolites were mainly classified into eight categories. KEGG pathway enrichment analysis revealed 13 different metabolic pathways. The screened PPARG, FABP3, ACSL5, FASN, UCP3 and SC5D were negatively correlated with muscle fat deposition, while PPARα, ACACA and ACOX1 were positively correlated with muscle fat deposition. The meat quality of CH was better than Y. The metabolites and metabolic pathways obtained by metabonomics analysis mainly involved the metabolism of amino acids and fatty acids, which were consistent with the differences in meat quality between the two breeds and the contents of precursors affecting flavor. The screened genes were associated with fatty deposition in poultry.
Collapse
Affiliation(s)
- Yong Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (K.W.); (X.Z.); (R.Z.); (G.W.); (J.K.); (Z.L.); (T.D.)
| | - Shuangmin Liang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
| | - Kun Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (K.W.); (X.Z.); (R.Z.); (G.W.); (J.K.); (Z.L.); (T.D.)
| | - Xiannian Zi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (K.W.); (X.Z.); (R.Z.); (G.W.); (J.K.); (Z.L.); (T.D.)
| | - Ru Zhang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (K.W.); (X.Z.); (R.Z.); (G.W.); (J.K.); (Z.L.); (T.D.)
| | - Guangzheng Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (K.W.); (X.Z.); (R.Z.); (G.W.); (J.K.); (Z.L.); (T.D.)
| | - Jiajia Kang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (K.W.); (X.Z.); (R.Z.); (G.W.); (J.K.); (Z.L.); (T.D.)
| | - Zijian Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (K.W.); (X.Z.); (R.Z.); (G.W.); (J.K.); (Z.L.); (T.D.)
| | - Tengfei Dou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (K.W.); (X.Z.); (R.Z.); (G.W.); (J.K.); (Z.L.); (T.D.)
| | - Changrong Ge
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (K.W.); (X.Z.); (R.Z.); (G.W.); (J.K.); (Z.L.); (T.D.)
| |
Collapse
|
5
|
Molecular Characterization, Tissue Distribution Profile, and Nutritional Regulation of acsl Gene Family in Golden Pompano ( Trachinotus ovatus). Int J Mol Sci 2022; 23:ijms23126437. [PMID: 35742881 PMCID: PMC9224283 DOI: 10.3390/ijms23126437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Long chain acyl-coA synthase (acsl) family genes activate the conversion of long chain fatty acids into acyl-coA to regulate fatty acid metabolism. However, the evolutionary characteristics, tissue expression and nutritional regulation of the acsl gene family are poorly understood in fish. The present study investigated the molecular characterization, tissue expression and nutritional regulation of the acsl gene family in golden pompano (Trachinotus ovatus). The results showed that the coding regions of acsl1, acsl3, acsl4, acsl5 and acsl6 cDNA were 2091 bp, 2142 bp, 2136 bp, 1977 bp and 2007 bp, encoding 697, 714, 712, 659 and 669 amino acids, respectively. Five acsl isoforms divided into two branches, namely, acsl1, acsl5 and acsl6, as well as acsl3 and acsl4. The tissue expression distribution of acsl genes showed that acsl1 and acsl3 are widely expressed in the detected tissues, while acsl4, acsl5 and acsl6 are mainly expressed in the brain. Compared to the fish fed with lard oil diets, the fish fed with soybean oil exhibited high muscular C18 PUFA contents and acsl1 and acsl3 mRNA levels, as well as low muscular SFA contents and acsl4 mRNA levels. High muscular n-3 LC-PUFA contents, and acsl3, acsl4 and acsl6 mRNA levels were observed in the fish fed with fish oil diets compared with those of fish fed with lard oil or soybean oil diets. High n-3 LC-PUFA levels and DHA contents, as well as the acsl3, acsl4 and acsl6 mRNA levels were exhibited in the muscle of fish fed diets with high dietary n-3 LC-PUFA levels. Additionally, the muscular acsl3, acsl4 and acsl6 mRNA expression levels, n-3 LC-PUFA and DHA levels were significantly up-regulated by the increase of dietary DHA proportions. Collectively, the positive relationship among dietary fatty acids, muscular fatty acids and acsl mRNA, indicated that T. ovatus Acsl1 and Acsl3 are beneficial for the C18 PUFA enrichment, and Acsl3, Acsl4 and Acsl6 are for n-3 LC-PUFA and DHA enrichment. The acquisition of fish Acsl potential function in the present study will play the foundation for ameliorating the fatty acids nutrition in farmed fish products.
Collapse
|
6
|
Ma F, Zou Y, Ma L, Ma R, Chen X. Evolution, characterization, and immune response function of long-chain acyl-CoA synthetase genes in rainbow trout (Oncorhynchus mykiss) under hypoxic stress. Comp Biochem Physiol B Biochem Mol Biol 2022; 260:110737. [PMID: 35385771 DOI: 10.1016/j.cbpb.2022.110737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/16/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
Long-chain acyl-CoA synthetases (Acsls), members of the acyl-activating enzyme superfamily, haves been systematically characterized in mammals and certain fishes, but the research on their involvement in reproductive development and hypoxic stress response in rainbow trout remains limited. In this study, we investigated the acsl gene structure and physical and chemical characteristics and the evolutionary relationship among acsl genes using the NCBI/Ensembl database. Using hypoxia treatment experiment, acsl gene expression in various organs and its regulation were investigated. A total of 11 acsl genes were identified in rainbow trout. Phylogenetic analyses found that acsl genes in rainbow trout were clustered into two clades: acsl3/4 and acsl1/2/5/6, and the additional gene duplication observed resulted from the third round of genome duplication unique to teleosts. Multiple sequence alignment and conserved motif analyses showed that the sequence of acsl proteins was highly conserved. Real-time quantitative PCR (RT-qPCR) showed that the acsl genes were highly expressed in immune tissues (liver and head kidney). Under hypoxia, the expression of acsl genes was upregulated, suggesting that they enhance the tolerance to hypoxia and are involved in the immune response in rainbow trout. Our study provides valuable insights into teleost evolution and effects of hypoxia on biological immunity and form a basis for further research on the functional characteristics of acsl genes.
Collapse
Affiliation(s)
- Fang Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, PR China.
| | - Yali Zou
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, PR China
| | - Langfang Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, PR China
| | - Ruilin Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, PR China
| | - Xin Chen
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, PR China
| |
Collapse
|
7
|
Luo N, Shu J, Yuan X, Jin Y, Cui H, Zhao G, Wen J. Differential regulation of intramuscular fat and abdominal fat deposition in chickens. BMC Genomics 2022; 23:308. [PMID: 35428174 PMCID: PMC9013108 DOI: 10.1186/s12864-022-08538-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/07/2022] [Indexed: 02/12/2023] Open
Abstract
Background Chicken intramuscular fat (IMF) content is closely related to meat quality and performance, such as tenderness and flavor. Abdominal fat (AF) in chickens is one of the main waste products at slaughter. Excessive AF reduces feed efficiency and carcass quality. Results To analyze the differential deposition of IMF and AF in chickens, gene expression profiles in the breast muscle (BM) and AF tissues of 18 animals were analyzed by differential expression analysis and weighted co-expression network analysis. The results showed that IMF deposition in BM was associated with pyruvate and citric acid metabolism through GAPDH, LDHA, GPX1, GBE1, and other genes. In contrast, AF deposition was related to acetyl CoA and glycerol metabolism through FABP1, ELOVL6, SCD, ADIPOQ, and other genes. Carbohydrate metabolism plays an essential role in IMF deposition, and fatty acid and glycerol metabolism regulate AF deposition. Conclusion This study elucidated the molecular mechanism governing IMF and AF deposition through crucial genes and signaling pathways and provided a theoretical basis for producing high-quality broilers. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08538-0.
Collapse
|
8
|
Ma Z, Luo N, Liu L, Cui H, Li J, Xiang H, Kang H, Li H, Zhao G. Identification of the molecular regulation of differences in lipid deposition in dedifferentiated preadipocytes from different chicken tissues. BMC Genomics 2021; 22:232. [PMID: 33812382 PMCID: PMC8019497 DOI: 10.1186/s12864-021-07459-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A body distribution with high intramuscular fat and low abdominal fat is the ideal goal for broiler breeding. Preadipocytes with different origins have differences in terms of metabolism and gene expression. The transcriptome analysis performed in this study of intramuscular preadipocytes (DIMFPs) and adipose tissue-derived preadipocytes (DAFPs) aimed to explore the characteristics of lipid deposition in different chicken preadipocytes by dedifferentiation in vitro. RESULTS Compared with DAFPs, the total lipid content in DIMFPs was reduced (P < 0.05). Moreover, 72 DEGs related to lipid metabolism were screened, which were involved in adipocyte differentiation, fatty acid transport and fatty acid synthesis, lipid stabilization, and lipolysis. Among the 72 DEGs, 19 DEGs were enriched in the PPAR signaling pathway, indicating its main contribution to the regulation of the difference in lipid deposition between DAFPs and DIMFPs. Among these 19 genes, the representative APOA1, ADIPOQ, FABP3, FABP4, FABP7, HMGCS2, LPL and RXRG genes were downregulated, but the ACSL1, FABP5, PCK2, PDPK1, PPARG, SCD, SCD5, and SLC27A6 genes were upregulated (P < 0.05 or P < 0.01) in the DIMFPs. In addition, the well-known pathways affecting lipid metabolism (MAPK, TGF-beta and calcium) and the pathways related to cell communication were enriched, which may also contribute to the regulation of lipid deposition. Finally, the regulatory network for the difference in lipid deposition between chicken DAFPs and DIMFPs was proposed based on the above information. CONCLUSIONS Our data suggested a difference in lipid deposition between DIMFPs and DAFPs of chickens in vitro and proposed a molecular regulatory network for the difference in lipid deposition between chicken DAFPs and DIMFPs. The lipid content was significantly increased in DAFPs by the direct mediation of PPAR signaling pathways. These findings provide new insights into the regulation of tissue-specific fat deposition and the optimization of body fat distribution in broilers.
Collapse
Affiliation(s)
- Zheng Ma
- School of Life Science and Engineering, Foshan University; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan, 534861, China
| | - Na Luo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Lu Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Jing Li
- School of Life Science and Engineering, Foshan University; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan, 534861, China
| | - Hai Xiang
- School of Life Science and Engineering, Foshan University; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan, 534861, China
| | - Huimin Kang
- School of Life Science and Engineering, Foshan University; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan, 534861, China
| | - Hua Li
- School of Life Science and Engineering, Foshan University; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan, 534861, China.
| | - Guiping Zhao
- School of Life Science and Engineering, Foshan University; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan, 534861, China. .,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Beijing, 100193, China.
| |
Collapse
|