1
|
Oto Y, Kuroki M, Iida M, Ito R, Nomura S, Watanabe K. A key evolutionary step determining osmoregulatory ability for freshwater colonisation in early life stages of fish. J Exp Biol 2023; 226:jeb246110. [PMID: 37767765 DOI: 10.1242/jeb.246110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Colonisation of freshwater habitats by marine animals is a remarkable evolutionary event that has enriched biodiversity in freshwater ecosystems. The acquisition of tolerance to hypotonic stress during early life stages is presumed to be essential for their successful freshwater colonisation, but very little empirical evidence has been obtained to support this idea. This study aimed to comprehend the evolutionary changes in osmoregulatory mechanisms that enhance larval freshwater tolerance in amphidromous fishes, which typically spend their larval period in marine (ancestral) habitats and the rest of their life history stages in freshwater (derived) habitats. We compared the life history patterns and changes in larval survivorship and gene expression depending on salinity among three congeneric marine-originated amphidromous goby species (Gymnogobius), which had been suggested to differ in their larval dependence on freshwater habitats. An otolith microchemical analysis and laboratory-rearing experiment confirmed the presence of freshwater residents only in G. urotaenia and higher larval survivorship of this species in the freshwater condition than in the obligate amphidromous G. petschiliensis and G. opperiens. Larval whole-body transcriptome analysis revealed that G. urotaenia from both amphidromous and freshwater-resident populations exhibited the greatest differences in expression levels of several osmoregulatory genes, including aqp3, which is critical for water discharge from their body during early fish development. The present results consistently support the importance of enhanced freshwater tolerance and osmoregulatory plasticity in larval fish to establish freshwater forms, and further identified key candidate genes for larval freshwater adaptation and colonisation in the goby group.
Collapse
Affiliation(s)
- Yumeki Oto
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| | - Mari Kuroki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo Metropolitan 113-8657, Japan
| | - Midori Iida
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, 87 Tassha, Sado City, Niigata Prefecture 952-2135, Japan
| | - Ryosuke Ito
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| | - Shota Nomura
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| | - Katsutoshi Watanabe
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| |
Collapse
|
2
|
Xing S, Li P, He S, Cao Z, Wang X, Cao X, Liu B, Chen C, You H, Li ZH. Physiological responses in Nile tilapia (Oreochromis niloticus) induced by combined stress of environmental salinity and triphenyltin. MARINE ENVIRONMENTAL RESEARCH 2022; 180:105736. [PMID: 36049432 DOI: 10.1016/j.marenvres.2022.105736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Triphenyltin (TPT) has attracted considerable attention owing to its vitality, bioaccumulation, and lurking damage. TPT widely exists in complex salinity areas such as estuaries and coastal regions. However, there are few studies on the toxicological behavior of TPT under different salinity. In the study, juvenile Nile tilapia (Oreochromis niloticus) were utilized as model animals to investigate the effects of environmental relevant TPT exposure on the osmoregulation and energy metabolism in gill under different salinity. The results showed that salinity and TPT single or combined exposure affected the morphology of the gill tissue. After TPT exposure, Na+-K+-ATPase (NKA) activity significantly decreased at 0 ppt, while NKA and Ca2+-Mg2+-ATPase (CMA) activities significantly increased at 15 ppt. In addition, significantly higher succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH) activities were found in the control fish compared to the TPT-exposed ones at 15 ppt. Quantitative real-time PCR results showed that TPT exposure affected the expression of osmoregulation and energy metabolism-related genes under different salinity. Overall, TPT exposure interfered with osmoregulation and energy metabolism under different salinity. The study will provide reference data for assessing the toxicity of organotin compounds in complex-salinity areas.
Collapse
Affiliation(s)
- Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Chengzhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Hong You
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
3
|
Zhu J, Chen L, Huang Y, Zhang F, Pan J, Li E, Qin J, Qin C, Wang X. New insights into the influence of myo-inositol on carbohydrate metabolism during osmoregulation in Nile tilapia ( Oreochromis niloticus). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 10:86-98. [PMID: 35647324 PMCID: PMC9124673 DOI: 10.1016/j.aninu.2022.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/08/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022]
Abstract
A two-factor (2 × 3) orthogonal test was conducted to investigate the effects of dietary myo-inositol (MI) on the osmoregulation and carbohydrate metabolism of euryhaline fish tilapia (Oreochromis niloticus) under sustained hypertonic stress (20 practical salinity units [psu]). 6 diets containing either normal carbohydrate (NC, 30%) or high carbohydrate (HC, 45%) levels, with 3 levels (0, 400 and 1,200 mg/kg diet) of MI, respectively, were fed to 540 fish under 20 psu for 8 weeks. Dietary MI supplementation significantly improved growth performance and crude protein content of whole fish, and decreased the content of crude lipid of whole fish (P < 0.05). Curled, disordered gill lamella and cracked gill filament cartilage were observed in the gill of fish fed diets without MI supplementation. The ion transport capacity in gill was significantly improved in the 1,200 mg/kg MI supplementation groups compared with the 0 mg/kg MI groups (P < 0.05). Moreover, the contents of Na+, K+, Cl− in serum were markedly reduced with the dietary MI supplementation (P < 0.05). The fish fed 1,200 mg/kg MI supplementation had the highest MI content in the gills and the lowest MI content in the serum (P < 0.05). Additionally, the fish fed with 1,200 mg/kg MI supplementation had the highest MI synthesis capacity in gills and brain (P < 0.05). Dietary MI markedly promoted the ability of carbohydrate metabolism in liver (P < 0.05). Moreover, fish in the 1,200 mg/kg MI groups had the highest antioxidant capacity (P < 0.05). This study indicated that high dietary carbohydrate would intensify stress, and impair the ability of osmoregulation in tilapia under a long-term hypersaline exposure. The supplementation of MI at 1,200 mg/kg in the high carbohydrate diet could promote carbohydrate utilization and improve the osmoregulation capacity of tilapia under long-term hypertonic stress.
Collapse
Affiliation(s)
- Jiahua Zhu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuxing Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fan Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jingyu Pan
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641100, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
- Corresponding author.
| |
Collapse
|
4
|
Zhou M, Zhao Z, Zhao J, Wu M, Chen X. Gene expression profiling of DNA methyltransferase genes in Siniperca chuatsi based on transcriptome sequencing. JOURNAL OF FISH BIOLOGY 2021; 99:1755-1760. [PMID: 34310718 DOI: 10.1111/jfb.14862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The mandarin fish (Siniperca chuatsi) DNA methyltransferase gene 1 (dnmt1) was highly expressed in the mesonephros, head kidney and gonad, whereas dnmt2 was expressed in most tissues. dnmt3a was highly expressed in the brain and spleen, but dnmt3b was mainly expressed in the brain and head kidney. The genes dnmt1 and dnmt2 were highly expressed in the early stages of embryonic development, and dnmt3a and dnmt3b were expressed later. These genes also showed certain changes after artificial diet acclimation, salinity adaptation and immune stress.
Collapse
Affiliation(s)
- Min Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Ziwei Zhao
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Jinliang Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Minglin Wu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| |
Collapse
|