1
|
Pal I, Majumdar S, Lepcha G, Ahmed KT, Yatirajula SK, Bhattacharya S, Chakravarti R, Bhattacharya B, Biswas SR, Dey B. Exploration of Variable Solvent Directed Self-Healable Supramolecular M(II)-Metallogels (M = Co, Ni, Zn) of Azelaic Acid: Investigating Temperature-Dependent Ion Conductivity and Antibacterial Efficiency. ACS APPLIED BIO MATERIALS 2023; 6:5442-5457. [PMID: 37997919 DOI: 10.1021/acsabm.3c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Molecular self-assembly assisted self-healing supramolecular metallogels of azelaic acid with cobalt(II)-, nickel(II)-, and zinc(II)-based metal acetate salts were successfully fabricated. Individually, N,N'-dimethylformamide and dimethyl sulfoxide were immobilized within these distinctly synthesized soft-scaffolds of metallogels to attain their semisolid viscoelastic nature. Rheological experiments such as amplitude sweep, frequency sweep, and thixotropic measurements were executed for these metallogels to ratify their gel features. The different extents of supramolecular interactions operating within these solvent-directed metallogels were clearly reflected in terms of their distinct morphological patterns as investigated through field emission scanning electron microscopy. Comparative infrared (IR) spectral properties of metallogels along with individual metal salts and azelaic acid were analyzed. These experimental data clearly depict the significant shifting of Fourier transform (FT)-IR peaks of xerogel samples of different metallogels from the gel-forming precursors. The networks present within the soft-scaffold are evidently illustrated by the electrospray ionization-mass experimental data. The temperature-dependent ionic conductivity studies with these solvent-directed versatile metallogel systems were investigated through impedance spectroscopy. The temperature-dependent impedance spectroscopic studies clearly demonstrate that the ion-transportation within the gel matrix depends not only on the types of cations but also on the dielectric properties of the immobilized solvents. The antipathogenic effect of these metallogel systems has also been explored by testing their effectiveness against human pathogenic Gram-negative bacteria Klebsiella pneumoniae (MTCC 109) and Vibrio parahemolyticus, and Gram-positive bacteria like Bacillus cereus (MTCC 1272). These gel soft-scaffolds show no significant cytotoxicity against both the human neuroblastoma cell line-SH-SY5Y and the human embryonic kidney cell line-HEK 293.
Collapse
Affiliation(s)
- Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Kazi Tawsif Ahmed
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
- Department of Botany, Visva-Bharati University, Santiniketan 731235, India
| | - Suresh Kumar Yatirajula
- Department of Chemical Engineering, Indian Institute of Technology (ISM) Dhanbad 826004, India
| | | | - Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | - Bireswar Bhattacharya
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | | | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
2
|
Lepcha G, Majumdar S, Pal B, Ahmed KT, Pal I, Satpati B, Biswas SR, Ray PP, Dey B. Suberic Acid-Based Supramolecular Metallogels of Ni(II), Zn(II), and Cd(II) for Anti-Pathogenic Activity and Semiconducting Diode Fabrication. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7469-7483. [PMID: 37192598 DOI: 10.1021/acs.langmuir.3c00765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The importance of three synthesized metallogels of suberic acid distinctly with nickel, zinc, and cadmium acetate salts has been uncovered. For the creation of these soft materials, N,N'-dimethyl formamide was utilized as a source of the trapped solvent. The synthesized metallogels display intriguing viscoelasticity, and the interpretation of experimental parameters obtained from rheological results advocates the gel behavior. Microstructural analysis combined with energy-dispersive X-ray confirms the occurrence of individual gel-developing constituents as observed in different hierarchical microstructural patterns. Significant variations in microstructural arrangements with diverse extent of supramolecular non-covalent patterns inside gel networks were perceived through field emission scanning electron microscopy, atomic force microscopy, and transmission electron microscopy analyses. Fourier transform infrared and electrospray ionization-mass spectral analyses and powder X-ray diffraction analysis of metallogel samples of different gel-establishing ingredients help to investigate the possible supramolecular interactions dictating the metallogel scaffolds. Thermogravimetric analysis of xerogel samples was collected from the synthesized metallogels to understand the thermal stability. These gel materials were characterized by their potential antibacterial efficiency. The potency of metallogels against selective Gram-positive and Gram-negative bacteria was visualized via a spectrophotometer. Human pathogens like Klebsiella pneumoniae (MTCC 109), Salmonella typhi (MTCC 733), Vibrio parahaemolyticus, Bacillus cereus (MTCC 1272), Lactobacillus fermentum (NCDO 955), and Staphylococcus aureus (MTCC 96) are employed in this study. Apart from the biological significance, our metallogels demonstrate as incredible diode performance of fabricated semiconducting systems, which exhibit a considerable amount of non-linearity demonstrating a non-ohmic conduction mechanism at room temperature in dark conditions. Device fabrication was achieved from these metallogels employing the sandwich model with indium tin oxide-coated glass substrates/metallogel/Al structure.
Collapse
Affiliation(s)
- Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Baishakhi Pal
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Kazi Tawsif Ahmed
- Department of Botany, Visva-Bharati University, Santiniketan 731235, India
| | - Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Biswarup Satpati
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| | | | | | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
3
|
Kazi TA, Mukhopadhyay BC, Mandal S, Biswas SR. Molecular characterization of five novel plasmids from Enterococcus italicus SD1 isolated from fermented milk: An insight into understanding plasmid incompatibility. Gene 2023; 856:147154. [PMID: 36574936 DOI: 10.1016/j.gene.2022.147154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Enterococcal plasmids have attracted considerable interest because of their indispensable role in the pathogenesis and dissemination of multidrug-resistance. In this work, five novel plasmids pSRB2, pSRB3, pSRB4, pSRB5 and pSRB7 have been identified and characterised, coexisting in Eneterococcus italicus SD1 from fermented milk. The plasmids pSRB2, pSRB3 and pSRB5 were found to replicate via theta mode of replication while pSRB4 and pSRB7 were rolling-circle plasmids. Comparative analysis of SD1-plasmids dictated that the plasmids are mosaic with novel architecture. Plasmids pSRB2 and pSRB5 are comprised of a typical iteron-based class-A theta type origin of replication, whereas pSRB3 has a Class-D theta type replication origin like pAMβ1. The plasmids pSRB4 and pSRB7 shared similar ori as in pWV01. The SD1 class-A theta type plasmids shared significant homology between their replication proteins with differences in their DNA-binding domain and comprises of distinct iterons. The differences in their iterons and replication proteins restricts the "handcuff" formation for inhibition of plasmid replication, rendering to their compatibility to coexist. Similarly, for SD1 rolling circle plasmids the differences in the replication protein binding site in the origin and the replication protein supports their coexistence by inhibiting the crosstalk between the origins and replication proteins. The phylogenetic tree of their replication proteins revealed their distant kinship. The results indicate that the identified plasmids are unique to E. italicus SD1, providing further opportunities to study their utility in designing multiple gene expression systems for the simultaneous production of proteins in enterococci with the renewed concept of plasmid incompatibility.
Collapse
Affiliation(s)
- Tawsif Ahmed Kazi
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | | | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Swadesh Ranjan Biswas
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India.
| |
Collapse
|
4
|
Kazi TA, Acharya A, Mukhopadhyay BC, Mandal S, Arukha AP, Nayak S, Biswas SR. Plasmid-Based Gene Expression Systems for Lactic Acid Bacteria: A Review. Microorganisms 2022; 10:1132. [PMID: 35744650 PMCID: PMC9229153 DOI: 10.3390/microorganisms10061132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023] Open
Abstract
Lactic acid bacteria (LAB) play a very vital role in food production, preservation, and as probiotic agents. Some of these species can colonize and survive longer in the gastrointestinal tract (GIT), where their presence is crucially helpful to promote human health. LAB has also been used as a safe and efficient incubator to produce proteins of interest. With the advent of genetic engineering, recombinant LAB have been effectively employed as vectors for delivering therapeutic molecules to mucosal tissues of the oral, nasal, and vaginal tracks and for shuttling therapeutics for diabetes, cancer, viral infections, and several gastrointestinal infections. The most important tool needed to develop genetically engineered LABs to produce proteins of interest is a plasmid-based gene expression system. To date, a handful of constitutive and inducible vectors for LAB have been developed, but their limited availability, host specificity, instability, and low carrying capacity have narrowed their spectrum of applications. The current review discusses the plasmid-based vectors that have been developed so far for LAB; their functionality, potency, and constraints; and further highlights the need for a new, more stable, and effective gene expression platform for LAB.
Collapse
Affiliation(s)
- Tawsif Ahmed Kazi
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Aparupa Acharya
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Bidhan Chandra Mukhopadhyay
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India;
| | - Ananta Prasad Arukha
- Researcher 5 Department of Neurosurgery, Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Subhendu Nayak
- Sr. Scientist, Clorox, Better Health VMS, Durham, NC 27701, USA;
| | - Swadesh Ranjan Biswas
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| |
Collapse
|