1
|
Wu D, Li Y, Zheng L, Xiao H, Ouyang L, Wang G, Sun Q. Small molecules targeting protein-protein interactions for cancer therapy. Acta Pharm Sin B 2023; 13:4060-4088. [PMID: 37799384 PMCID: PMC10547922 DOI: 10.1016/j.apsb.2023.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 10/07/2023] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to many biological processes that play an important role in the occurrence and development of a variety of diseases. Targeting the interaction between tumour-related proteins with emerging small molecule drugs has become an attractive approach for treatment of human diseases, especially tumours. Encouragingly, selective PPI-based therapeutic agents have been rapidly advancing over the past decade, providing promising perspectives for novel therapies for patients with cancer. In this review we comprehensively clarify the discovery and development of small molecule modulators of PPIs from multiple aspects, focusing on PPIs in disease, drug design and discovery strategies, structure-activity relationships, inherent dilemmas, and future directions.
Collapse
Affiliation(s)
- Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Lang Zheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Terrell JR, Tang S, Faniyi OO, Jeong IH, Yin J, Nijampatnam B, Velu SE, Wang W, Zhang R, Luo M. Structural studies of antitumor compounds that target the RING domain of MDM2. Protein Sci 2022; 31:e4367. [PMID: 35900024 PMCID: PMC9301682 DOI: 10.1002/pro.4367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/11/2022] [Accepted: 05/27/2022] [Indexed: 08/03/2023]
Abstract
Mouse double minute 2 homolog (MDM2) is an E3 ubiquitin-protein ligase that is involved in the transfer of ubiquitin to p53 and other protein substrates. The expression of MDM2 is elevated in cancer cells and inhibitors of MDM2 showed potent anticancer activities. Many inhibitors target the p53 binding domain of MDM2. However, inhibitors such as Inulanolide A and MA242 are found to bind the RING domain of MDM2 to block ubiquitin transfer. In this report, crystal structures of MDM2 RING domain in complex with Inulanolide A and MA242 were solved. These inhibitors primarily bind in a hydrophobic site centered at the sidechain of Tyr489 at the C-terminus of MDM2 RING domain. The C-terminus of MDM2 RING domain, especially residue Tyr489, is required for ubiquitin discharge induced by MDM2. The binding of these inhibitors at Tyr489 may interrupt interactions between the MDM2 RING domain and the E2-Ubiquitin complex to inhibit ubiquitin transfer, regardless of what the substrate is. Our results suggest a new mechanism of inhibition of MDM2 E3 activity for a broad spectrum of substrates.
Collapse
Affiliation(s)
- James Ross Terrell
- Center for Diagnostics and TherapeuticsGeorgia State UniversityAtlantaGeorgiaUSA
- Department of ChemistryGeorgia State UniversityAtlantaGeorgiaUSA
| | - Sijia Tang
- Institute for Biomedical SciencesGeorgia State UniversityAtlantaGeorgiaUSA
| | - Oluwafoyinsola Omobodunde Faniyi
- Center for Diagnostics and TherapeuticsGeorgia State UniversityAtlantaGeorgiaUSA
- Department of ChemistryGeorgia State UniversityAtlantaGeorgiaUSA
| | - In Ho Jeong
- Department of ChemistryGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jun Yin
- Center for Diagnostics and TherapeuticsGeorgia State UniversityAtlantaGeorgiaUSA
- Department of ChemistryGeorgia State UniversityAtlantaGeorgiaUSA
| | | | - Sadanandan E. Velu
- Department of ChemistryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of PharmacyUniversity of HoustonHoustonTexasUSA
- Drug Discovery InstituteUniversity of HoustonHoustonTexasUSA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of PharmacyUniversity of HoustonHoustonTexasUSA
- Drug Discovery InstituteUniversity of HoustonHoustonTexasUSA
| | - Ming Luo
- Center for Diagnostics and TherapeuticsGeorgia State UniversityAtlantaGeorgiaUSA
- Department of ChemistryGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|