1
|
Midde A, Arri N, Kristian T, Mukherjee S, Sen Gupta PS, Zhang Y, Karbowski M, Waddell J, Maharajan N, Hassan MS, O'Hagan HM, Zalzman M, Banerjee A. Targeting mitochondrial ribosomal protein expression by andrographolide and melatonin for colon cancer treatment. Cancer Lett 2025; 619:217647. [PMID: 40127816 DOI: 10.1016/j.canlet.2025.217647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/05/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Colospheroids contain colon cancer stem cells (CSCs) that cause colorectal cancer metastasis (mCRC). Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the U.S. Little is known about the role of mitochondria in the survival and metastatic ability of CSCs. In this study, we investigate the effect of andrographolide (AGP) and melatonin (MLT) on mitochondrial dynamics (including fusion and fission) and the expression of mitochondrial ribosomal proteins (MRPs). Our results show that AGP and MLT synergistically reduce the total active mitochondrial mass, downregulate fusion and fission proteins, reduce OXPHOS proteins, and lead to CSC growth inhibition via Nrf2 and KEAP1 signaling. Microarray revealed 4389 differentially expressed mRNAs in the AGP and MLT combination compared to the control. Results exhibiting a three-fold induction/reduction were validated by qRT-PCR and immunoblot. MRPS6, a mitochondrial ribosomal (Mitoribosome) small subunit protein, was dramatically downregulated by AGP + MLT treatment compared to control. MRPS6 inhibition by siRNA reduced mCRC cell viability. Molecular docking-based protein-ligand interactions showed that AGP has direct physical interaction with MRPS6 and increases the binding affinity of MLT to MRPS6. This drug combination downregulated genes in the NRF2 (NFE2L2) pathway in CSCs. MRPS6 may be directly linked to CSC proliferation and could be a therapeutic target for this population. Functionally, MRPS6 knockdown significantly reduced colony formation, with enhanced suppression in AGP + MLT-treated cells. In xenograft models, the AGP-MLT combination synergistically decreased MRPS6 expression and increased apoptosis, as evidenced by TUNEL assays, demonstrating the therapeutic potential of targeting MRPS6 in CRC.
Collapse
Affiliation(s)
- Advaitha Midde
- Department of Pediatrics, University of Maryland School of Medicine (UMSOM), Baltimore, MD, USA
| | - Navpreet Arri
- Department of Pediatrics, University of Maryland School of Medicine (UMSOM), Baltimore, MD, USA
| | - Tibor Kristian
- VAMHCS, UMSOM, Baltimore, MD, USA; Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (STAR), UMSOM, Baltimore, MD, USA
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory(IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, DY Patil International University, Pune, India
| | - Yuji Zhang
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, UMSOM, Baltimore, MD, USA
| | - Mariuz Karbowski
- Department of Biochemistry and Molecular Biology, UMSOM, Baltimore, MD, USA
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine (UMSOM), Baltimore, MD, USA
| | - Nagarajan Maharajan
- Department of Biochemistry and Molecular Biology, UMSOM, Baltimore, MD, USA; Department of Otorhinolaryngology-Head & Neck Surgery, UMSOM, Baltimore, MD, USA
| | - Md Sazzad Hassan
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA; Harper Cancer Research Institute, South Bend, IN, USA
| | - Heather M O'Hagan
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michal Zalzman
- Department of Biochemistry and Molecular Biology, UMSOM, Baltimore, MD, USA; Department of Otorhinolaryngology-Head & Neck Surgery, UMSOM, Baltimore, MD, USA
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine (UMSOM), Baltimore, MD, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center (UMGCCC), USA.
| |
Collapse
|
2
|
Zhao Q, Wu J, Yao J, Liu Z, Li C, Sun Q. Simultaneously induce apoptosis and inhibiting metastasis of Triple negative breast cancer Enabled by a highly potent NIR fluorescent inhibitor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126183. [PMID: 40294573 DOI: 10.1016/j.saa.2025.126183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/30/2025]
Abstract
Triple-negative breast cancer (TNBC) is a cancerous tumor that poses a global threat to women's lives and health. Currently, chemotherapy is the preferred treatment for advanced TNBC. In this work, we have identified a novel NIR fluorescent inhibitor, SWMU690, which can effectively inhibit the proliferation of TNBC at low doses. The half-maximal inhibitory concentration (IC50) values of SWMU690 against the MDA-MB-231, 4 T1, and T47D cell lines were determined to be 104 nM, 509.4 nM, and 206 nM, respectively. We found that SWMU690 specifically localized in mitochondria to trigger mitochondria-mediated intrinsic apoptotic pathways. Furthermore, SWMU690 can suppress the production of ATP to inhibit TNBC metastasis. This study demonstrated the advantage of disrupting the function of mitochondria in inhibiting the proliferation and metastasis of TNBC, and may have other applications in the treatment of other malignant tumors.
Collapse
Affiliation(s)
- Qixin Zhao
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000 Sichuan, China.
| | - Jiao Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu 610000 Sichuan, China.
| | - Jiale Yao
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000 Sichuan, China.
| | - Zengjin Liu
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000 Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000 Sichuan, China.
| | - Changqiang Li
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Qin Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000 Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000 Sichuan, China.
| |
Collapse
|
3
|
Wu B, Gao A, He B, Chen Y, Kong X, Wen F, Gao H. RNA-seq analysis of mitochondria-related genes regulated by AMPK in the human trophoblast cell line BeWo. Animal Model Exp Med 2025; 8:649-661. [PMID: 39445545 PMCID: PMC12008445 DOI: 10.1002/ame2.12475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND How AMP activated protein kinase (AMPK) signaling regulates mitochondrial functions and mitophagy in human trophoblast cells remains unclear. This study was designed to investigate potential players mediating the regulation of AMPK on mitochondrial functions and mitophagy by next generation RNA-seq. METHODS We compared ATP production in protein kinase AMP-activated catalytic subunit alpha 1/2 (PRKAA1/2) knockdown (AKD) and control BeWo cells using the Seahorse real-time ATP rate test, then analyzed gene expression profiling by RNA-seq. Differentially expressed genes (DEG) were examined by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Then protein-protein interactions (PPI) among mitochondria related genes were further analyzed using Metascape and Ingenuity Pathway Analysis (IPA) software. RESULTS Both mitochondrial and glycolytic ATP production in AKD cells were lower than in the control BeWo cells (CT), with a greater reduction of mitochondrial ATP production. A total of 1092 DEGs were identified, with 405 upregulated and 687 downregulated. GO analysis identified 60 genes associated with the term 'mitochondrion' in the cellular component domain. PPI analysis identified three clusters of mitochondria related genes, including aldo-keto reductase family 1 member B10 and B15 (AKR1B10, AKR1B15), alanyl-tRNA synthetase 1 (AARS1), mitochondrial ribosomal protein S6 (MRPS6), mitochondrial calcium uniporter dominant negative subunit beta (MCUB) and dihydrolipoamide branched chain transacylase E2 (DBT). CONCLUSIONS In summary, this study identified multiple mitochondria related genes regulated by AMPK in BeWo cells, and among them, three clusters of genes may potentially contribute to altered mitochondrial functions in response to reduced AMPK signaling.
Collapse
Affiliation(s)
- Bin Wu
- Department of Reproductive MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
| | - Albert Gao
- Department of Physiology and Biophysics, College of MedicineHoward UniversityWashingtonDistrict of ColumbiaUSA
| | - Bin He
- Reproductive Physiology LaboratoryNational Research Institute for Family PlanningBeijingP.R. China
| | - Yun Chen
- Landmark BioWatertownMassachusettsUSA
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of SciencesChangshaHunanP.R. China
| | - Fayuan Wen
- Department of Biology, College of Arts and SciencesHoward UniversityWashingtonDistrict of ColumbiaUSA
| | - Haijun Gao
- Department of Physiology and Biophysics, College of MedicineHoward UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
4
|
Alkhathami AG, Pallathadka H, Shah S, Ganesan S, Sharma A, Devi S, Mustafa YF, Alasheqi MQ, Kadhim AJ, Zwamel AH. LncRNAs in modulating cancer cell resistance to paclitaxel (PTX) therapy. Med Oncol 2024; 42:28. [PMID: 39671022 DOI: 10.1007/s12032-024-02577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
Paclitaxel (PTX) is widely used for treating several cancers, including breast, ovarian, lung, esophageal, gastric, pancreatic, and neck cancers. Despite its clinical utility, cancer recurrence frequently occurs in patients due to the development of resistance to PTX. Resistance mechanisms in cancer cells treated with PTX include alterations in β-tubulin, the target molecule involved in mitosis, activation of molecular pathways enabling drug efflux, and dysregulation of apoptosis-related proteins. Long non-coding RNAs (lncRNAs), which are RNA molecules longer than 200 nucleotides without protein-coding potential, serve diverse regulatory roles in cellular processes. Increasing evidence highlights the involvement of lncRNAs in cancer progression and their contribution to PTX resistance across various cancers. Consequently, lncRNAs have emerged as potential therapeutic targets for addressing drug resistance in cancer treatment. This review focuses on the current understanding of lncRNAs and their role in drug resistance mechanisms, aiming to encourage further investigation in this area. Key lncRNAs and their associated pathways linked to PTX resistance will be summarized.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Sejal Shah
- Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, 140307, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Bacon JM, Jones JL, Liu GS, Dickinson JL, Raspin K. Mitochondrial ribosomal proteins in metastasis and their potential use as prognostic and therapeutic targets. Cancer Metastasis Rev 2024; 43:1119-1135. [PMID: 39354291 PMCID: PMC11554709 DOI: 10.1007/s10555-024-10216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
The mitochondrion is an essential cell organelle known as the powerhouse of the cell. Mitochondrial ribosomal proteins (MRPs) are nuclear encoded, synthesised in the cytoplasm but perform their main functions in the mitochondria, which includes translation, transcription, cell death and maintenance. However, MRPs have also been implicated in cancer, particularly advanced disease and metastasis across a broad range of cancer types, where they play a central role in cell survival and progression. For some, their altered expression has been investigated as potential prognostic markers, and/or therapeutic targets, which is the focus of this review. Several therapies targeting MRPs are currently approved by the Food and Drug Administration and the European Medicines Agency for use in other diseases, revealing the opportunity for repurposing their use in advanced and metastatic cancer. Herein, we review the evidence supporting key MRPs as molecular drivers of advanced disease in multiple cancer types. We also highlight promising avenues for future use of MRPs as precision targets in the treatment of late-stage cancers for which there are currently very limited effective treatment options.
Collapse
Affiliation(s)
- Jasmine M Bacon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Johanna L Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kelsie Raspin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
6
|
Bazyari MJ, Aghaee-Bakhtiari SH. MiRNA target enrichment analysis of co-expression network modules reveals important miRNAs and their roles in breast cancer progression. J Integr Bioinform 2024; 21:jib-2022-0036. [PMID: 39716374 PMCID: PMC11698623 DOI: 10.1515/jib-2022-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 03/21/2023] [Indexed: 12/25/2024] Open
Abstract
Breast cancer has the highest incidence and is the fifth cause of death in cancers. Progression is one of the important features of breast cancer which makes it a life-threatening cancer. MicroRNAs are small RNA molecules that have pivotal roles in the regulation of gene expression and they control different properties in breast cancer such as progression. Recently, systems biology offers novel approaches to study complicated biological systems like miRNAs to find their regulatory roles. One of these approaches is analysis of weighted co-expression network in which genes with similar expression patterns are considered as a single module. Because the genes in one module have similar expression, it is rational to think the same regulatory elements such as miRNAs control their expression. Herein, we use WGCNA to find important modules related to breast cancer progression and use hypergeometric test to perform miRNA target enrichment analysis and find important miRNAs. Also, we use negative correlation between miRNA expression and modules as the second filter to ensure choosing the right candidate miRNAs regarding to important modules. We found hsa-mir-23b, hsa-let-7b and hsa-mir-30a are important miRNAs in breast cancer and also investigated their roles in breast cancer progression.
Collapse
Affiliation(s)
- Mohammad Javad Bazyari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Center,Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Wei Z, Liu C, Liang J, Zhou X, Xue K, Wang K, Zhang X. Characterization of Mitoribosomal Small Subunit unit genes related immune and pharmacogenomic landscapes in renal cell carcinoma. IUBMB Life 2024; 76:647-665. [PMID: 38551358 DOI: 10.1002/iub.2818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/23/2024] [Indexed: 08/31/2024]
Abstract
Mitoribosomes are essential for the production of biological energy. The Human Mitoribosomal Small Subunit unit (MRPS) family, responsible for encoding mitochondrial ribosomal small subunits, is actively engaged in protein synthesis within the mitochondria. Intriguingly, MRPS family genes appear to play a role in cancer. A multistep process was employed to establish a risk model associated with MRPS genes, aiming to delineate the immune and pharmacogenomic landscapes in clear cell renal cell carcinoma (ccRCC). MRPScores were computed for individual patients to assess their responsiveness to various treatment modalities and their susceptibility to different therapeutic targets and drugs. While MRPS family genes have been implicated in various cancers as oncogenes, our findings reveal a contrasting tumor suppressor role for MRPS genes in ccRCC. Utilizing an MRPS-related risk model, we observed its excellent prognostic capability in predicting survival outcomes for ccRCC patients. Remarkably, the subgroup with high MRPS-related scores (MRPScore) displayed poorer prognosis but exhibited a more robust response to immunotherapy. Through in silico screening of 2183 drug targets and 1646 compounds, we identified two targets (RRM2 and OPRD1) and eight agents (AZ960, carmustine, lasalocid, SGI-1776, AZD8055_1059, BPD.00008900_1998, MK.8776_2046, and XAV939_1268) with potential therapeutic implications for high-MRPScore patients. Our study represents the pioneering effort in proposing that molecular classification, diagnosis, and treatment strategies can be formulated based on MRPScores. Indeed, a high MRPScore profile appears to elevate the risk of tumor progression and mortality, potentially through its influence on immune regulation. This suggests that the MRPS-related risk model holds promise as a prognostic predictor and may offer novel insights into personalized therapeutic strategies.
Collapse
Affiliation(s)
- Zhihao Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenchen Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqian Liang
- Department of Urology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Zhou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Jiang Y, Zhang G, Li L, Chen J, Hao P, Gao Z, Hao J, Xu Z, Wang M, Li C, Jin N. A novel host restriction factor MRPS6 mediates the inhibition of PDCoV infection in HIEC-6 cells. Front Immunol 2024; 15:1381026. [PMID: 38919620 PMCID: PMC11196785 DOI: 10.3389/fimmu.2024.1381026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Porcine deltacoronavirus (PDCoV) is a zoonotic pathogen with a global distribution, capable of infecting both pigs and humans. To mitigate the risk of cross-species transmission and potential outbreaks, it is crucial to characterize novel antiviral genes, particularly those from human hosts. Methods This research used HIEC-6 to investigate PDCoV infection. HIEC-6 cells were infected with PDCoV. Samples were collected 48 h postinfection for proteomic analysis. Results We discovered differential expression of MRPS6 gene at 48 h postinfection with PDCoV in HIEC-6 cells. The gene expression initially increased but then decreased. To further explore the role of MRPS6 in PDCoV infection, we conducted experiments involving the overexpression and knockdown of this gene in HIEC-6 and Caco2 cells, respectively. Our findings revealed that overexpression of MRPS6 significantly inhibited PDCoV infection in HIEC-6 cells, while knockdown of MRPS6 in Caco2 cells led to a significant increase of virus titer. Furthermore, we investigated the correlation between PDCoV infection and the expression of MRPS6. Subsequent investigations demonstrated that MRPS6 exerted an augmentative effect on the production of IFN-β through interferon pathway activation, consequently impeding the progression of PDCoV infection in cellular systems. In conclusion, this study utilized proteomic analysis to investigate the differential protein expression in PDCoV-infected HIEC-6 cells, providing evidence for the first time that the MRPS6 gene plays a restrictive role in PDCoV virus infection. Discussion Our findings initially provide the validation of MRPS6 as an upstream component of IFN-β pathway, in the promotion of IRF3, IRF7, STAT1, STAT2 and IFN-β production of HIEC-6 via dual-activation from interferon pathway.
Collapse
Affiliation(s)
- Yuhang Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guoqing Zhang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jing Chen
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zihan Gao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jiayi Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhiqiang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Maopeng Wang
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Chang Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
9
|
Yu H, Lin J, Yuan J, Sun X, Wang C, Bai B. Screening mitochondria-related biomarkers in skin and plasma of atopic dermatitis patients by bioinformatics analysis and machine learning. Front Immunol 2024; 15:1367602. [PMID: 38774875 PMCID: PMC11106410 DOI: 10.3389/fimmu.2024.1367602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Background There is a significant imbalance of mitochondrial activity and oxidative stress (OS) status in patients with atopic dermatitis (AD). This study aims to screen skin and peripheral mitochondria-related biomarkers, providing insights into the underlying mechanisms of mitochondrial dysfunction in AD. Methods Public data were obtained from MitoCarta 3.0 and GEO database. We screened mitochondria-related differentially expressed genes (MitoDEGs) using R language and then performed GO and KEGG pathway analysis on MitoDEGs. PPI and machine learning algorithms were also used to select hub MitoDEGs. Meanwhile, the expression of hub MitoDEGs in clinical samples were verified. Using ROC curve analysis, the diagnostic performance of risk model constructed from these hub MitoDEGs was evaluated in the training and validation sets. Further computer-aided algorithm analyses included gene set enrichment analysis (GSEA), immune infiltration and mitochondrial metabolism, centered on these hub MitoDEGs. We also used real-time PCR and Spearman method to evaluate the relationship between plasma circulating cell-free mitochondrial DNA (ccf-mtDNA) levels and disease severity in AD patients. Results MitoDEGs in AD were significantly enriched in pathways involved in mitochondrial respiration, mitochondrial metabolism, and mitochondrial membrane transport. Four hub genes (BAX, IDH3A, MRPS6, and GPT2) were selected to take part in the creation of a novel mitochondrial-based risk model for AD prediction. The risk score demonstrated excellent diagnostic performance in both the training cohort (AUC = 1.000) and the validation cohort (AUC = 0.810). Four hub MitoDEGs were also clearly associated with the innate immune cells' infiltration and the molecular modifications of mitochondrial hypermetabolism in AD. We further discovered that AD patients had considerably greater plasma ccf-mtDNA levels than controls (U = 92.0, p< 0.001). Besides, there was a significant relationship between the up-regulation of plasma mtDNA and the severity of AD symptoms. Conclusions The study highlights BAX, IDH3A, MRPS6 and GPT2 as crucial MitoDEGs and demonstrates their efficiency in identifying AD. Moderate to severe AD is associated with increased markers of mitochondrial damage and cellular stress (ccf=mtDNA). Our study provides data support for the variation in mitochondria-related functional characteristics of AD patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Bingxue Bai
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
10
|
Nekoeian S, Ferdowsian S, Asgari Y, Azizi Z. Identification of Hub Genes Associated with Resistance to Prednisolone in Acute Lymphoblastic Leukemia Based on Weighted Gene Co-expression Network Analysis. Mol Biotechnol 2023; 65:1913-1922. [PMID: 36877306 DOI: 10.1007/s12033-023-00707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/18/2023] [Indexed: 03/07/2023]
Abstract
Resistance against glucocorticoids which are used to reduce inflammation and treatment of a number of diseases, including leukemia, is known as the first stage of treatment failure in acute lymphoblastic leukemia. Since these drugs are the essential components of chemotherapy regimens for ALL and play an important role in stop of cell growth and induction of apoptosis, it is important to identify genes and the molecular mechanism that may affect glucocorticoid resistance. In this study, we used the GSE66705 dataset and weighted gene co-expression network analysis (WGCNA) to identify modules that correlated more strongly with prednisolone resistance in type B lymphoblastic leukemia patients. The PPI network was built using the DEGs key modules and the STRING database. Finally, we used the overlapping data to identify hub genes. out of a total of 12 identified modules by WGCNA, the blue module was find to have the most statistically significant correlation with prednisolone resistance and Nine genes including SOD1, CD82, FLT3, GART, HPRT1, ITSN1, TIAM1, MRPS6, MYC were recognized as hub genes Whose expression changes can be associated with prednisolone resistance. Enrichment analysis based on the MsigDB repository showed that the altered expressed genes of the blue module were mainly enriched in IL2_STAT5, KRAS, MTORC1, and IL6-JAK-STAT3 pathways, and their expression changes can be related to cell proliferation and survival. The analysis performed by the WGCNA method introduced new genes. The role of some of these genes was previously reported in the resistance to chemotherapy in other diseases. This can be used as clues to detect treatment-resistant (drug-resistant) cases in the early stages of diseases.
Collapse
Affiliation(s)
- Shahram Nekoeian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, School of Advanced Technologies in Medicine, Italia st, Keshavarz Blvd, Tehran, 1417755469, Iran
- Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, School of Advanced Technologies in Medicine, Italia st, Keshavarz Blvd, Tehran, 1417755469, Iran.
| | - Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, School of Advanced Technologies in Medicine, Italia st, Keshavarz Blvd, Tehran, 1417755469, Iran.
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Ma J, Sun L, Gao W, Li Y, Dong D. RNA binding protein: coordinated expression between the nuclear and mitochondrial genomes in tumors. J Transl Med 2023; 21:512. [PMID: 37507746 PMCID: PMC10386658 DOI: 10.1186/s12967-023-04373-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Mitochondria are the only organelles regulated by two genomes. The coordinated translation of nuclear DNA (nDNA) and mitochondrial DNA (mtDNA), which together co-encode the subunits of the oxidative phosphorylation (OXPHOS) complex, is critical for determining the metabolic plasticity of tumor cells. RNA-binding protein (RBP) is a post-transcriptional regulatory factor that plays a pivotal role in determining the fate of mRNA. RBP rapidly and effectively reshapes the mitochondrial proteome in response to intracellular and extracellular stressors, mediating the cytoplasmic and mitochondrial translation balance to adjust mitochondrial respiratory capacity and provide energy for tumor cells to adapt to different environmental pressures and growth needs. This review highlights the ability of RBPs to use liquid-liquid phase separation (LLPS) as a platform for translation regulation, integrating nuclear-mitochondrial positive and retrograde signals to coordinate cross-department translation, reshape mitochondrial energy metabolism, and promote the development and survival of tumor cells.
Collapse
Affiliation(s)
- Jiaoyan Ma
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Weinan Gao
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yang Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Delu Dong
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
12
|
Li Z, Klein JA, Rampam S, Kurzion R, Campbell NB, Patel Y, Haydar TF, Zeldich E. Asynchronous excitatory neuron development in an isogenic cortical spheroid model of Down syndrome. Front Neurosci 2022; 16:932384. [PMID: 36161168 PMCID: PMC9504873 DOI: 10.3389/fnins.2022.932384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
The intellectual disability (ID) in Down syndrome (DS) is thought to result from a variety of developmental deficits such as alterations in neural progenitor division, neurogenesis, gliogenesis, cortical architecture, and reduced cortical volume. However, the molecular processes underlying these neurodevelopmental changes are still elusive, preventing an understanding of the mechanistic basis of ID in DS. In this study, we used a pair of isogenic (trisomic and euploid) induced pluripotent stem cell (iPSC) lines to generate cortical spheroids (CS) that model the impact of trisomy 21 on brain development. Cortical spheroids contain neurons, astrocytes, and oligodendrocytes and they are widely used to approximate early neurodevelopment. Using single cell RNA sequencing (scRNA-seq), we uncovered cell type-specific transcriptomic changes in the trisomic CS. In particular, we found that excitatory neuron populations were most affected and that a specific population of cells with a transcriptomic profile resembling layer IV cortical neurons displayed the most profound divergence in developmental trajectory between trisomic and euploid genotypes. We also identified candidate genes potentially driving the developmental asynchrony between trisomic and euploid excitatory neurons. Direct comparison between the current isogenic CS scRNA-seq data and previously published datasets revealed several recurring differentially expressed genes between DS and control samples. Altogether, our study highlights the power and importance of cell type-specific analyses within a defined genetic background, coupled with broader examination of mixed samples, to comprehensively evaluate cellular phenotypes in the context of DS.
Collapse
Affiliation(s)
- Zhen Li
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Jenny A. Klein
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
| | - Sanjeev Rampam
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Ronni Kurzion
- Department of Chemistry, Boston University, Boston, MA, United States
| | | | - Yesha Patel
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Tarik F. Haydar
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, United States
| |
Collapse
|
13
|
Koc EC, Koc FC, Kartal F, Tirona M, Koc H. Role of mitochondrial translation in remodeling of energy metabolism in ER/PR(+) breast cancer. Front Oncol 2022; 12:897207. [PMID: 36119536 PMCID: PMC9472243 DOI: 10.3389/fonc.2022.897207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Remodeling of mitochondrial energy metabolism is essential for the survival of tumor cells in limited nutrient availability and hypoxic conditions. Defects in oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis also cause a switch in energy metabolism from oxidative to aerobic glycolysis contributing to the tumor heterogeneity in cancer. Specifically, the aberrant expressions of mitochondrial translation components such as ribosomal proteins (MRPs) and translation factors have been increasingly associated with many different cancers including breast cancer. The mitochondrial translation is responsible for the synthesis 13 of mitochondrial-encoded OXPHOS subunits of complexes. In this study, we investigated the contribution of mitochondrial translation in the remodeling of oxidative energy metabolism through altered expression of OXPHOS subunits in 26 ER/PR(+) breast tumors. We observed a significant correlation between the changes in the expression of mitochondrial translation-related proteins and OXPHOS subunits in the majority of the ER/PR(+) breast tumors and breast cancer cell lines. The reduced expression of OXPHOS and mitochondrial translation components also correlated well with the changes in epithelial-mesenchymal transition (EMT) markers, E-cadherin (CHD1), and vimentin (VIM) in the ER/PR(+) tumor biopsies. Data mining analysis of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) breast cancer proteome further supported the correlation between the reduced OXPHOS subunit expression and increased EMT and metastatic marker expression in the majority of the ER/PR(+) tumors. Therefore, understanding the role of MRPs in the remodeling of energy metabolism will be essential in the characterization of heterogeneity at the molecular level and serve as diagnostic and prognostic markers in breast cancer.
Collapse
Affiliation(s)
- Emine C. Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
- *Correspondence: Emine C. Koc, ; Hasan Koc,
| | - Fatih C. Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Funda Kartal
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Maria Tirona
- Department of Medical Oncology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Hasan Koc
- Department of Pharmaceutical Science, School of Pharmacy, Marshall University, Huntington, WV, United States
- *Correspondence: Emine C. Koc, ; Hasan Koc,
| |
Collapse
|
14
|
Oviya RP, Thangaretnam KP, Ramachandran B, Ramanathan P, Jayavelu S, Gopal G, Rajkumar T. Mitochondrial ribosomal small subunit (MRPS) MRPS23 protein-protein interaction reveals phosphorylation by CDK11-p58 affecting cell proliferation and knockdown of MRPS23 sensitizes breast cancer cells to CDK1 inhibitors. Mol Biol Rep 2022; 49:9521-9534. [PMID: 35962848 DOI: 10.1007/s11033-022-07842-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Post-translational modification of some mitoribosomal proteins has been found to regulate their functions. MRPS23 has been reported to be overexpressed in various cancers and has been predicted to be involved in increased cell proliferation. Furthermore, MRPS23 is a driver of luminal subtype breast cancer. However, its exact role and function in cancer remains unknown. METHODS AND RESULTS: Our previous study identified protein-protein interactions involving MRPS23 and CDK11A. In this study, we confirmed the interaction of MRPS23 with the p110 and p58 isoforms of CDK11A. Phosphoprotein enrichment studies and in vitro kinase assay using CDK11A/cyclin D3 followed by MALDI-ToF/ToF analysis confirmed the phosphorylation of MRPS23 at N-terminal serine 11 residue. Breast cancer cells expressing the MRPS23 (S11G) mutant showed increased cell proliferation, increased expression of PI3-AKT pathway proteins [p-AKT (Ser47), p-AKT (Thr308), p-PDK (Ser241) and p-GSK-3β (Ser9)] and increased antiapoptotic pathway protein expression [Bcl-2, Bcl-xL, p-Bcl2 (Ser70) and MCL-1] when compared with the MRPS23 (S11A) mutant-overexpressing cells. This finding indicated the role of MRPS23 phosphorylation in the proliferation and survival of breast cancer cells. The correlation of inconsistent MRPS23 phosphoserine 11 protein expression with CDK11A in the breast cancer cells suggested phosphorylation by other kinases. In vitro kinase assay showed that CDK1 kinase also phosphorylated MRPS23 and that inhibition using CDK1 inhibitors lowered phospho-MRPS23 (Ser11) levels. Additionally, modulating the expression of MRPS23 altered the sensitivity of the cells to CDK1 inhibitors. CONCLUSION In conclusion, phosphorylation of MRPS23 by mitotic kinases might potentially be involved in the proliferation of breast cancer cells. Furthermore, MRPS23 can be targeted for sensitizing the breast cancer cells to CDK1 inhibitors.
Collapse
Affiliation(s)
| | | | - Balaji Ramachandran
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Priya Ramanathan
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Subramani Jayavelu
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Gopisetty Gopal
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, Tamil Nadu, 600020, India. .,Department of Molecular Oncology, Cancer Institute (WIA), Chennai, 600036, India.
| | - Thangarajan Rajkumar
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, Tamil Nadu, 600020, India
| |
Collapse
|
15
|
Lin X, Guo L, Lin X, Wang Y, Zhang G. Expression and prognosis analysis of mitochondrial ribosomal protein family in breast cancer. Sci Rep 2022; 12:10658. [PMID: 35739158 PMCID: PMC9226049 DOI: 10.1038/s41598-022-14724-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer (BC) is characterized by high morbidity. Mitochondrial ribosomal protein (MRP) family participates in mitochondrial energy metabolism, underlying BC progression. This study aims to analyze the expression and prognosis effect of the MRP genes in BC patients. GEPIA2, UALCAN, cBioPortal, and MethSurv were used to demonstrate the differential expression, genomic alteration profiles, and DNA methylation of the MRP gene family in BC. Functional enrichment analysis and protein-protein interaction network construction were performed to understand the biological function. Based on 1056 TCGA samples with the transcriptional level of MRPs, Kaplan-Meier curves, Cox, and LASSO regression were applied to explore their prognostic effects. 12 MRPs were upregulated in BC, which were associated with gene amplification and DNA methylation. MRP genetic alteration occurred in 42% of BC patients, and amplification was the most frequent variation. Functioning in its entirety, the MRP family was involved in mitochondrial translational termination, elongation, translation, and poly(A) RNA binding. High expression of MRPL1, MRPL13, MRPS6, MRPS18C, and MRPS35, as well as low levels of MRPL16, and MRPL40 significantly indicated poor prognosis in BC patients. Thus, a novel MRP-based prognostic nomogram was established and verified with favorable discrimination and calibration. We not only provided a thorough expression and prognosis analysis of the MRP family in BC patients but also constructed an MRP-based prognostic nomogram. It was suggested that MRPs acted as biomarkers in individualized risk prediction and may serve as potential therapeutic targets in BC patients.
Collapse
Affiliation(s)
- Xiaoyi Lin
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Lijuan Guo
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xin Lin
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yulei Wang
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Guochun Zhang
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Bao S, Wang X, Li M, Gao Z, Zheng D, Shen D, Liu L. Potential of Mitochondrial Ribosomal Genes as Cancer Biomarkers Demonstrated by Bioinformatics Results. Front Oncol 2022; 12:835549. [PMID: 35719986 PMCID: PMC9204274 DOI: 10.3389/fonc.2022.835549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
Next-generation sequencing and bioinformatics analyses have clearly revealed the roles of mitochondrial ribosomal genes in cancer development. Mitochondrial ribosomes are composed of three RNA components encoded by mitochondrial DNA and 82 specific protein components encoded by nuclear DNA. They synthesize mitochondrial inner membrane oxidative phosphorylation (OXPHOS)-related proteins and participate in various biological activities via the regulation of energy metabolism and apoptosis. Mitochondrial ribosomal genes are strongly associated with clinical features such as prognosis and foci metastasis in patients with cancer. Accordingly, mitochondrial ribosomes have become an important focus of cancer research. We review recent advances in bioinformatics research that have explored the link between mitochondrial ribosomes and cancer, with a focus on the potential of mitochondrial ribosomal genes as biomarkers in cancer.
Collapse
Affiliation(s)
- Shunchao Bao
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Xinyu Wang
- Department of Breast Surgery, Second Hospital of Jilin University, Changchun, China
| | - Mo Li
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Zhao Gao
- Nuclear Medicine Department, Second Hospital of Jilin University, Changchun, China
| | - Dongdong Zheng
- Department of Cardiovascular Surgery, Second Hospital of Jilin University, Changchun, China
| | - Dihan Shen
- Medical Research Center, Second Hospital of Jilin University, Changchun, China
| | - Linlin Liu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|