1
|
Iwamoto H, Suzuki H, Masuda A, Sakaue T, Nakamura T, Tanaka T, Sakai M, Imamura Y, Yano H, Torimura T, Koga H, Yasuda K, Tsurusaki M, Seki T, Kawaguchi T. A tumor endothelial cell-specific microRNA replacement therapy for hepatocellular carcinoma. iScience 2024; 27:108797. [PMID: 38303694 PMCID: PMC10831275 DOI: 10.1016/j.isci.2024.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Current approved anti-angiogenic drugs (AAD) for hepatocellular carcinoma (HCC) inhibit tumor angiogenesis, but affect the hepatic vasculature resulting in adverse effects. Tumor endothelial cells (TECs) differ from normal endothelial cells. In this study, we aimed to detect TEC-specific miRNAs and develop an anti-angiogenic treatment specific for TECs. We established HCC orthotopic mouse models. TEC-specific miRNAs were detected using a microRNA array. Finally, we evaluated the therapeutic effects of the TEC-specific miRNA agonist cocktail. In total, 260 TEC-specific genes were detected. Among the top ten downregulated TEC-specific miRNAs, miR-139-3p and 214-3p were important for the TEC phenotype. The TEC-specific microRNA agonist cocktail showed significant anti-tumor effects by inhibiting tumor angiogenesis without affecting hepatic vasculatures in HCC orthotopic mouse models. Moreover, it significantly downregulated tip-cell sprouting-related genes. We identified two downregulated TEC-specific miRNAs; microRNA replacement therapy, which targets the downregulated TEC-specific miRNAs, is an effective and promising treatment for HCC.
Collapse
Affiliation(s)
- Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
- Department of Medicine, Iwamoto Internal Medicine Clinic, Kitakyushu 802 0832, Japan
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Toru Nakamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Toshimitsu Tanaka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Miwa Sakai
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Yasuko Imamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| | - Kaori Yasuda
- Cell Innovator, Inc., Venture Business Laboratory of Kyushu University, Fukuoka 812-8582, Japan
| | - Masakatsu Tsurusaki
- Department of Radiology, Kindai University Faculty of Medicine, Osaka-Sayama 589 8511, Japan
| | - Takahiro Seki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 831 0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 831 0011, Japan
| |
Collapse
|
2
|
Vasefifar P, Najafi S, Motafakkerazad R, Amini M, Safaei S, Najafzadeh B, Alemohammad H, Jafarlou M, Baradaran B. Targeting Nanog expression increased Cisplatin chemosensitivity and inhibited cell migration in Gastric cancer cells. Exp Cell Res 2023:113681. [PMID: 37315760 DOI: 10.1016/j.yexcr.2023.113681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Regardless of significant advances in cancer treatment, gastric cancer (GC) incidence rate is increasing worldwide. As one of the main transcription factors participating in stemness, Nanog plays a pivotal role in various aspects of tumorigenesis, metastasis, and chemosensitivity. Given that, the current research intended to evaluate the potential effects of Nanog suppression on the GC cell cisplatin chemosensitivity and in vitro tumorigenesis. First, bioinformatics analysis was performed to evaluate the effect of Nanog expression on GC patients' survival. The MKN-45 human GC cells were transfected with specific siRNA targeting Nanog and/or treated with Cisplatin. Then, to study cellular viability and apoptosis, MTT assay and Annexin V/PI staining were done, respectively. Also, the scratch assay was performed to investigate cell migration, and MKN-45 cell stemness was followed using colony formation assay. Western blotting and qRT-PCR were used for gene expression analysis. The findings demonstrated that siRNA-mediated Nanog silencing strongly increased MKN-45 cell sensitivity to Cisplatin through apoptosis induction. Also, Nanog suppression combined with Cisplatin resulted in the upregulation of the Caspase-3 and Bax/Bcl-2 ratio at mRNA levels and increased Caspase-3 activation. Moreover, reduced expression of Nanog, separately or combined with Cisplatin, inhibited MKN-45 cell migration by downregulating MMP2 mRNA and protein expression levels. The results also evidenced CD44 and SOX-2 downregulation aligned with a decreased rate of MKN-45 cell colony formation ability through treatments. Besides, Nanog downregulation significantly decreased MDR-1 mRNA expression. Taken together, the results of this study indicated that Nanog could be suggested as a promising target combined with Cisplatin-based GC therapies for reducing drug side effects and improving patients' outcomes.
Collapse
Affiliation(s)
- Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Recent strategies for electrochemical sensing detection of miRNAs in lung cancer. Anal Biochem 2023; 661:114986. [PMID: 36384188 DOI: 10.1016/j.ab.2022.114986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
MicroRNAs (miRNAs) associated with lung cancer are diversifying. MiR-21, Let-7, and miR-141 are common diagnostic targets. Some new lung cancer miRNAs, such as miR-25, miR-145, and miR-126, have received increasing attention. Although various techniques are available for the analysis of lung cancer miRNAs, electrochemistry has been recognized for its high sensitivity, low cost, and rapid response. However, how to realize the signal amplification is one of the most important contents in the design of electrochemical biosensors. Herein, we mainly introduce the amplification strategy based on enzyme-free amplification and signal conversion, including non-linear HCR, catalytic hairpin assembly (CHA), electrochemiluminescence (ECL), and Faraday cage. Furthermore, new progress has emerged in the fields of nanomaterials, low oxidation potential, and simultaneous detection of multiple targets. Finally, we summarize some new challenges that electrochemical techniques may encounter in the future, such as improving single-base discrimination ability, shortening electrochemical detection time, and providing real body fluid samples assay.
Collapse
|
4
|
Amirmahani F, Vallian S, Asadi MH. The LncRNA MIAT is identified as a regulator of stemness-associated transcript in glioma. Mol Biol Rep 2023; 50:517-530. [PMID: 36352177 DOI: 10.1007/s11033-022-07962-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/17/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Myocardial infarction-associated transcript (MIAT) is a long non-coding RNA (lncRNA) with altered expression in different diseases and malignancies. In this study, the potential expression and function of lncRNA MIAT in intuition and progression of brain cancer was investigated. METHODS AND RESULTS At first, TCGA data analysis demonstrated that lncRNA MIAT is significantly upregulated in various malignancies, especially its expression is dramatically elevated in brain tumors. In line with the data, we further evaluated the expression of MIAT in a series of brain tumor tissue, and our results revealed that the expression of MIAT was noticeably overexpressed in glioblastoma (p = < 0.0001). We further found that the expression of MIAT was markedly upregulated in low-grade brain tumors rather than high-grade ones. To further investigate the biological function of MIAT in brain cancer cells, its expression was suppressed by si-RNA-mediated knocking down. Inhibition of MIAT resulted in reduced proliferation of brain tumor cells followed by cell cycle arrest at the G1 phase, and significant induction of apoptosis, and senescence, but limited the migration ability and epithelial-mesenchymal-transition (EMT). Moreover, knocking-down of MIAT reduced the expression of stemness factors, followed by upregulation of their downstream miRNAs (micro RNAs), let-7a-5p, and miR-29b-3p. CONCLUSIONS Altogether, our data demonstrated that lncRNA MIAT could control proliferation, migration, and metastasis of brain cancer cells via regulating the Nanog/ Sox2 / let-7a-5p / miR-29b-3p axis. This data could introduce lncRNA MIAT as a novel oncogene in brain cancer pathogenesis.
Collapse
Affiliation(s)
- Farzane Amirmahani
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sadeq Vallian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Malek Hossein Asadi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|
5
|
Alemohammad H, Motafakkerazad R, Asadzadeh Z, Farsad N, Hemmat N, Najafzadeh B, Vasefifar P, Baradaran B. siRNA-mediated silencing of Nanog reduces stemness properties and increases the sensitivity of HepG2 cells to cisplatin. Gene 2022; 821:146333. [PMID: 35182674 DOI: 10.1016/j.gene.2022.146333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022]
Abstract
Liver cancer is one of the most lethal cancers having worldwide prevalence. Despite significant progress in cancer therapy, liver cancer-induced mortality is very high. Nanog, as an essential transcription factor modulating cellular multipotency, causes tumor progression, drug resistance, and preserves stemness properties in various tumors such as liver cancer. Thus, this research was conducted to evaluate the impact of combination therapy of Nanog siRNA/cisplatin on the sensitivity of liver cancer cells to this drug. HepG2 cells were transfected with Nanog siRNA and treated with cisplatin, individually and in combination. Then, it was observed that in transfected HepG2 cells, Nanog expression was significantly reduced at mRNA level and also these cells were sensitized to cisplatin. In addition, to assess the impact of Nanog siRNA and cisplatin individually and in combination on cells' viability, migration capacity, apoptosis, and cell cycle progression, the MTT, wound healing, colony formation assay, Annexin V/PI staining, and flow cytometry assays were applied on HepG2 cells, respectively. Also, the quantitive Real-Time PCR was used to check the expression of stemness-associated genes (CD44, CD133, and Sox2), and apoptosis-related genes (caspase-3, 8, 9, BAX and Bcl2) after combination therapy. It is indicated that the combination of Nanog siRNA and cisplatin significantly reduced proliferation, migration, and colony formation ability, as well as increased apoptosis rate, and cell cycle arrest. Also, it is found that the combination of Nanog siRNA and cisplatin down-regulated the expression of stemness-associated genes and up-regulated apoptosis-related genes in HepG2 cells. Hence, it can be suggested that Nanog inhibition in combination with cisplatin is a potential therapeutic strategy for developing new therapeutic approaches for liver cancer.
Collapse
Affiliation(s)
- Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad
- Department of Plant Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Resveratrol Analog 4-Bromo-Resveratrol Inhibits Gastric Cancer Stemness through the SIRT3-c-Jun N-Terminal Kinase Signaling Pathway. Curr Issues Mol Biol 2021; 44:63-72. [PMID: 35723384 PMCID: PMC8929134 DOI: 10.3390/cimb44010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is the treatment of choice for gastric cancer, but the currently available therapeutic drugs have limited efficacy. Studies have suggested that gastric cancer stem cells may play a key role in drug resistance in chemotherapy. Therefore, new agents that selectively target gastric cancer stem cells in gastric tumors are urgently required. Sirtuin-3 (SIRT3) is a deacetylase that regulates mitochondrial metabolic homeostasis to maintain stemness in glioma stem cells. Targeting the mitochondrial protein SIRT3 may provide a novel therapeutic option for gastric cancer treatment. However, the mechanism by which stemness is regulated through SIRT3 inhibition in gastric cancer remains unknown. We evaluated the stemness inhibition ability of the SIRT3 inhibitor 4′-bromo-resveratrol (4-BR), an analog of resveratrol in human gastric cancer cells. Our results suggested that 4-BR inhibited gastric cancer cell stemness through the SIRT3-c-Jun N-terminal kinase pathway and may aid in gastric cancer stem-cell–targeted therapy.
Collapse
|
7
|
MicroRNA-let-7 Targets HMGA2 to Regulate the Proliferation, Migration, and Invasion of Colon Cancer Cell HCT116. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2134942. [PMID: 34567205 PMCID: PMC8457942 DOI: 10.1155/2021/2134942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022]
Abstract
Objective To investigate the effect of microRNA-let-7 (miR-let-7) on the proliferation, migration, and invasion of colon cancer cell HCT116 in vitro and its regulatory mechanism on downstream HMGA2. Methods It was planned to synthesize miR-let-7 overexpression (mimics) and interference expression (inhibitor) and transiently transfect colon cancer cell HCT116, detect the expression levels of miR-let-7 and HMGA2 in the cells after transfection and the targeted regulation effect of miR-let-7 on HMGA2, then detect the effect of upregulation/downregulation of miR-let-7 on HMGA2, and detect the proliferation, migration, and invasion of HCT116 cells. Results The expression of miR-let-7 was downregulated, and the expression of HMGA2 was upregulated in HCT116. The expression of miR-let-7 increased significantly after HCT116 was transfected with miR-let-7 mimics. The expression of miR-let-7 decreased significantly after HCT116 was transfected with miR-let-7 inhibitor. The bioinformatics websites predicted that miR-let-7 has a binding site with HMGA2, and the dual-luciferase reporter gene experiment detected that miR-let-7 has a targeting relationship with HMGA2. The expression of HMGA2 decreased after HCT116 was transfected with miR-let-7 mimics; the expression of HMGA2 increased after HCT116 was transfected with miR-let-7 inhibitor. After upregulating miR-let-7, the proliferation, migration, and invasion ability of HCT116 was weakened. After miR-let-7 was inhibited, the proliferation, migration, and invasion ability of HCT116 was enhanced. Conclusion Abnormal expression of miR-let-7 is an important factor affecting the proliferation, migration, and invasion of HCT116 cells, and it can promote or inhibit the biological behavior of cancer cells by targeting the expression of HMGA2. This study provides ideas for the drug development of new gene targets.
Collapse
|