1
|
Bunde TT, Pedra ACK, de Oliveira NR, Dellagostin OA, Bohn TLO. A systematic review on the selection of reference genes for gene expression studies in rodents: are the classics the best choice? Mol Biol Rep 2024; 51:1017. [PMID: 39327364 DOI: 10.1007/s11033-024-09950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Rodents are commonly used as animal models in studies investigating various experimental conditions, often requiring gene expression analysis. Quantitative real-time reverse transcription PCR (RT-qPCR) is the most widely used tool to quantify target gene expression levels under different experimental conditions in various biological samples. Relative normalization with reference genes is a crucial step in RT-qPCR to obtain reliable quantification results. In this work, the main reference genes used in gene expression studies among the three rodents commonly employed in scientific research-hamster, rat, and mouse-are analyzed and described. An individual literature search for each rodent was conducted using specific search terms in three databases: PubMed, Scopus, and Web of Science. A total of 157 articles were selected (rats = 73, mice = 79, and hamsters = 5), identifying various reference genes. The most commonly used reference genes were analyzed according to each rodent, sample type, and experimental condition evaluated, revealing a great variability in the stability of each gene across different samples and conditions. Classic genes, which are expected to be stably expressed in both samples and conditions analyzed, demonstrated greater variability, corroborating existing concerns about the use of these genes. Therefore, this review provides important insights for researchers seeking to identify suitable reference genes for their validation studies in rodents.
Collapse
Affiliation(s)
- Tiffany T Bunde
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Ana C K Pedra
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natasha R de Oliveira
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir A Dellagostin
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thaís L O Bohn
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
2
|
Alymbaeva D, Szabo C, Jocsak G, Bartha T, Zsarnovszky A, Kovago C, Ondrasovicova S, Kiss DS. Analysis of arsenic-modulated expression of hypothalamic estrogen receptor, thyroid receptor, and peroxisome proliferator-activated receptor gamma mRNA and simultaneous mitochondrial morphology and respiration rates in the mouse. PLoS One 2024; 19:e0303528. [PMID: 38753618 PMCID: PMC11098319 DOI: 10.1371/journal.pone.0303528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Arsenic has been identified as an environmental toxicant acting through various mechanisms, including the disruption of endocrine pathways. The present study assessed the ability of a single intraperitoneal injection of arsenic, to modify the mRNA expression levels of estrogen- and thyroid hormone receptors (ERα,β; TRα,β) and peroxisome proliferator-activated receptor gamma (PPARγ) in hypothalamic tissue homogenates of prepubertal mice in vivo. Mitochondrial respiration (MRR) was also measured, and the corresponding mitochondrial ultrastructure was analyzed. Results show that ERα,β, and TRα expression was significantly increased by arsenic, in all concentrations examined. In contrast, TRβ and PPARγ remained unaffected after arsenic injection. Arsenic-induced dose-dependent changes in state 4 mitochondrial respiration (St4). Mitochondrial morphology was affected by arsenic in that the 5 mg dose increased the size but decreased the number of mitochondria in agouti-related protein- (AgRP), while increasing the size without affecting the number of mitochondria in pro-opiomelanocortin (POMC) neurons. Arsenic also increased the size of the mitochondrial matrix per host mitochondrion. Complex analysis of dose-dependent response patterns between receptor mRNA, mitochondrial morphology, and mitochondrial respiration in the neuroendocrine hypothalamus suggests that instant arsenic effects on receptor mRNAs may not be directly reflected in St3-4 values, however, mitochondrial dynamics is affected, which predicts more pronounced effects in hypothalamus-regulated homeostatic processes after long-term arsenic exposure.
Collapse
Affiliation(s)
- Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Csaba Szabo
- Department of Animal Physiology and Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Tibor Bartha
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- Department of Animal Physiology and Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Physiology and Health, Institute of Physiology and Nutrition, Hungarian University of Agricultural and Life Sciences, Kaposvar, Hungary
| | - Csaba Kovago
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Silvia Ondrasovicova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
3
|
Daude MM, Ságio SA, Rodrigues JN, Lima NMP, Lima AA, Sarmento MI, Sarmento RA, Barreto HG. Reference genes for Eucalyptus spp. under Beauveria bassiana inoculation and subsequently infestation by the galling wasp Leptocybe invasa. Sci Rep 2024; 14:2556. [PMID: 38297150 PMCID: PMC10830493 DOI: 10.1038/s41598-024-52948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Relative gene expression analysis through RT-qPCR is an important molecular technique that helps understanding different molecular mechanisms, such as the plant defense response to insect pests. However, the use of RT-qPCR for gene expression analysis can be affected by factors that directly affect the reliability of the results. Among these factors, the appropriate choice of reference genes is crucial and can strongly impact RT-qPCR relative gene expression analyses, highlighting the importance in correctly choosing the most suitable genes for the success of the analysis. Thus, this study aimed to select and validate reference genes for relative gene expression studies through RT-qPCR in hybrids of Eucalyptus tereticornis × Eucalyptus camaldulensis (drought tolerant and susceptible to Leptocybe invasa) under conditions of inoculation by the Beauveria bassiana fungus and subsequent infestation by L. invasa. The expression level and stability of eleven candidate genes were evaluated. Stability was analyzed using the RefFinder tool, which integrates the geNorm, NormFinder, BestKeeper, and Delta-Ct algorithms. The selected reference genes were validated through the expression analysis of the transcriptional factor EcDREB2 (dehydration-responsive element-binding protein 2). For all treatments evaluated, EcPTB, EcPP2A-1, and EcEUC12 were the best reference genes. The triplets EcPTB/EcEUC12/EcUBP6, EcPP2A-1/EcEUC12/EcPTB, EcIDH/EcSAND/Ecα-TUB, EcPP2A-1/Ecα-TUB/EcPTB, and EcPP2A-1/EcUPL7/EcSAND were the best reference genes for the control plants, mother plants, plants inoculated with B. bassiana, plants infested with L. invasa, and plants inoculated with B. bassiana and subsequently infested with L. invasa, respectively. The best determined reference genes were used to normalize the RT-qPCR expression data for each experimental condition evaluated. The results emphasize the importance of this type of study to ensure the reliability of relative gene expression analyses. Furthermore, the findings of this study can be used as a basis for future research, comprising gene expression analysis of different eucalyptus metabolic pathways.
Collapse
Affiliation(s)
- Matheus Martins Daude
- Laboratory of Molecular Analysis (LAM), Life Sciences Department, Faculty of Medicine, Federal University of Tocantins, Palmas, TO, Brazil
- Postgraduate Program in Biodiversity and Biotechnology, Rede Bionorte, Federal University of Tocantins, Palmas, TO, Brazil
| | - Solange Aparecida Ságio
- Laboratory of Molecular Analysis (LAM), Life Sciences Department, Faculty of Medicine, Federal University of Tocantins, Palmas, TO, Brazil
- Postgraduate Program in Digital Agroenergy, Federal University of Tocantins, Palmas, TO, Brazil
| | - Jovielly Neves Rodrigues
- Postgraduate Program in Forest and Environmental Sciences, Federal University of Tocantins, Palmas, TO, Brazil
| | | | - André Almeida Lima
- Laboratory of Molecular Analysis (LAM), Life Sciences Department, Faculty of Medicine, Federal University of Tocantins, Palmas, TO, Brazil
| | - Maíra Ignacio Sarmento
- Postgraduate Program in Forest and Environmental Sciences, Federal University of Tocantins, Palmas, TO, Brazil
| | - Renato Almeida Sarmento
- Postgraduate Program in Biodiversity and Biotechnology, Rede Bionorte, Federal University of Tocantins, Palmas, TO, Brazil
- Postgraduate Program in Forest and Environmental Sciences, Federal University of Tocantins, Palmas, TO, Brazil
| | - Horllys Gomes Barreto
- Laboratory of Molecular Analysis (LAM), Life Sciences Department, Faculty of Medicine, Federal University of Tocantins, Palmas, TO, Brazil.
- Postgraduate Program in Biodiversity and Biotechnology, Rede Bionorte, Federal University of Tocantins, Palmas, TO, Brazil.
- Postgraduate Program in Digital Agroenergy, Federal University of Tocantins, Palmas, TO, Brazil.
| |
Collapse
|
4
|
Sozoniuk M, Jamioł M, Kankofer M, Kowalczyk K. Reference gene selection in bovine caruncular epithelial cells under pregnancy-associated hormones exposure. Sci Rep 2022; 12:12742. [PMID: 35882953 PMCID: PMC9325760 DOI: 10.1038/s41598-022-17069-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
Examination of transcriptional regulation occurring during pregnancy establishment and maintenance requires the identification of endogenous reference genes characterized by high expression stability. Since the expression of some reference genes may be modulated by pregnancy-associated hormones, the goal of our study was to identify suitable reference genes unaffected by hormonal treatment. In our study bovine caruncular epithelial cells were subjected to progesterone, estrogen and prostaglandin F2α treatment. Ten candidate reference genes (ACTR1A, CNOT11, HDAC1, HPRT1, RPL19, RPS9, SDHA, SUZ12, UXT and ZNF131) were evaluated with the use of four approaches (geNorm, NormFinder, BestKeeper, delta Ct). We found that RPS9 and SUZ12 displayed the highest expression stability in the tested material. Moreover, HPRT1 and SDHA were found inappropriate for RT-qPCR data normalization as they demonstrated the highest expression variability out of all candidates analysed. Hence geNorm calculations shown that the use of just two best-performing genes would be sufficient for obtaining reliable results, we propose that RPS9 and SUZ12 be used as suitable endogenous controls in future studies investigating gene expression in normal and compromised pregnancies.
Collapse
Affiliation(s)
- Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka Street 15, 20-950, Lublin, Poland
| | - Monika Jamioł
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Science in Lublin, Akademicka Street 12, 20-033, Lublin, Poland.
| | - Marta Kankofer
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Science in Lublin, Akademicka Street 12, 20-033, Lublin, Poland
| | - Krzysztof Kowalczyk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka Street 15, 20-950, Lublin, Poland
| |
Collapse
|