1
|
Yi W, Zhu N, Peng Z, Chu X, Sun H, Song L, Guo Z, Pain A, Luo Z, Guan Q. In silico characterization of defense system hotspots in Acinetobacter spp. Commun Biol 2025; 8:39. [PMID: 39794449 PMCID: PMC11723918 DOI: 10.1038/s42003-025-07459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
The bacteria-phage arm race drives the evolution of diverse bacterial defenses. This study identifies and characterizes the defense hotspots in Acinetobacter baumannii using a reference-free approach. Among 4383 high-quality genomes, we found a total of 17,430 phage defense systems and with 54.54% concentrated in 21 hotspots. These hotspots exhibit distinct preferences for different defense systems, and co-occurrence patterns suggest synergistic interactions. Additionally, the mobile genetic elements are abundant around these hotspots, likely facilitating horizontal transfer and evolution of defense systems. The number of hotspots increases in species phylogenetically closer to Acinetobacter baumannii, but the number of defense systems per hotspot varies due to particular selective pressures. These findings provide critical insights into the genetic organization of phage defense systems, contributing to a broader understanding of bacterial immunity and the evolutionary dynamics that shape Acinetobacter genomes. This knowledge lays the foundation for developing targeted interventions to combat antibiotic resistance Acinetobacter baumannii.
Collapse
Affiliation(s)
- Wenjing Yi
- Bioinformatics Laboratory, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China
| | - Ning Zhu
- Bioinformatics Laboratory, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China
| | - Zhihan Peng
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xiao Chu
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Haotian Sun
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Lei Song
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhimin Guo
- Department of Laboratory Medicine, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
| | - Zhaoqing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Qingtian Guan
- Bioinformatics Laboratory, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Cui Y, Xiao Y, Wang Z, Ji P, Zhang C, Li Y, Fang J, Yu X. Microbial community structure and functional traits involved in the adaptation of culturable bacteria within the gut of amphipods from the deepest ocean. Microbiol Spectr 2025; 13:e0072324. [PMID: 39655934 PMCID: PMC11705852 DOI: 10.1128/spectrum.00723-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025] Open
Abstract
The Hadal Zone is acknowledged for its extreme environmental conditions, especially high hydrostatic pressures. The dominant scavengers in the Hadal Zone, Hadal amphipods, fulfill vital roles in the Hadal food web and ecological niches. However, research on the gut microbiota of amphipods related to ecological functions and environmental adaptation is still limited. Here, we used 16S rRNA sequencing technology and a culture-dependent method to analyze the composition of the gut microbiota in Amphipoda living in the Mariana Trench. A total of 16 bacterial genera were identified. Among them, Firmicutes and Proteobacteria were the predominant phyla. The adaptability of gut probiotics to the environment was investigated. Pediococcus pentosaceus XY62 was picked up as the representative strain to elucidate the ecological functions of gut microbes in amphipods. The ProBio database and the K-B agar diffusion method indicated that P. pentosaceus XY62 exhibited the highest probiotic activity compared with all other isolated strains. Specific metabolic pathways and transporter systems that contribute to a range of environmental adaptation strategies have been revealed by genomic analysis of P. pentosaceus XY62. The environmental response genes and a specialized KDP transport system allow it to adapt to the challenging conditions of the Hadal Zone. In addition, the presence of antibacterial compounds and antibiotic resistance genes, as well as the ability to form a biofilm, facilitated the successful colonization of P. pentosaceus XY62 in the gut environment. IMPORTANCE Amphipods are widely distributed in the Hadal trenches, and the study of their gut microbes has garnered considerable scientific interest. Our research breaks away from traditional omics approaches, innovatively combining sequencing technologies with culture-dependent methods to analyze the gut microbiome structure of amphipods from the Mariana Trench. This not only complements the current omics-dominated field but also paves the way for future resource development of extreme microbes. Furthermore, by conducting genomic analyses and functional validations on a representative strain, we have uncovered its probiotic effects and strategies for adapting to extreme environments. This provides new insights into the theoretical study of the ecological functions of deep-sea bacteria. Overall, our findings offer a fresh perspective on the microbial community structure and environmental adaptation strategies of gut microorganisms in the Hadal Zone.
Collapse
Affiliation(s)
- Yukun Cui
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Yu Xiao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Zhuo Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Paiyao Ji
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Changhao Zhang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Yongqi Li
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Xi Yu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
3
|
Zelasko S, Swaney MH, Suh WS, Sandstrom S, Carlson C, Cagnazzo J, Golfinos A, Fossen J, Andes D, Kalan LR, Safdar N, Currie CR. Altered oral microbiota of drug-resistant organism carriers exhibit impaired gram-negative pathogen inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614756. [PMID: 39386697 PMCID: PMC11463450 DOI: 10.1101/2024.09.24.614756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The oral microbiome has been understudied as a reservoir for clinical pathogens, including drug-resistant strains. Understanding how alterations in microbiome functioning render this site vulnerable to colonization is essential, as multidrug-resistant organisms (MDRO) carriage is a major risk factor for developing serious infections. To advance our knowledge of oral MDRO carriage and protection against pathogen colonization conferred by native microbiota, we examined microbiomes from individuals colonized by MDROs (n=33) and non-colonized age-matched controls (n=30). Shotgun metagenomic analyses of oral swabs from study participants revealed significant differences in microbial communities with depletion of Streptococcus spp. among those colonized by multidrug-resistant gram-negative bacilli (RGNB), compared to non-carriers. We utilized metagenomic sequencing to characterize the oral resistome and find antimicrobial resistance genes are present in higher abundance among RNGB carriers versus non-carriers. High-throughput co-culture screening revealed oral bacteria isolated from MDRO non-carriers demonstrate greater inhibition of gram-negative pathogens, compared to isolates from carriers. Moreover, biosynthetic gene clusters from streptococci are found in higher abundance from non-carrier microbiomes, compared to RGNB carrier microbiomes. Bioactivity-guided fractionation of extracts from Streptococcus isolate SID2657 demonstrated evidence of strong E. coli and A. baumannii inhibition in a murine model of infection. Together, this provides evidence that oral microbiota shape this dynamic microbial community and may serve as an untapped source for much-needed antimicrobial small-molecules.
Collapse
|
4
|
Feng NX, Li DW, Zhang F, Bin H, Huang YT, Xiang L, Liu BL, Cai QY, Li YW, Xu DL, Xie Y, Mo CH. Biodegradation of phthalate acid esters and whole-genome analysis of a novel Streptomyces sp. FZ201 isolated from natural habitats. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133972. [PMID: 38461665 DOI: 10.1016/j.jhazmat.2024.133972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Di-n-butyl phthalate (DBP) is one of the most extensively used phthalic acid esters (PAEs) and is considered to be an emerging, globally concerning pollutant. The genus Streptomyces holds promise as a degrader of various organic pollutants, but PAE biodegradation mechanisms by Streptomyces species remain unsolved. In this study, a novel PAE-degrading Streptomyces sp. FZ201 isolated from natural habitats efficiently degraded various PAEs. FZ201 had strong resilience against DBP and exhibited immediate degradation, with kinetics adhering to a first-order model. The comprehensive biodegradation of DBP involves de-esterification, β-oxidation, trans-esterification, and aromatic ring cleavage. FZ201 contains numerous catabolic genes that potentially facilitate PAE biodegradation. The DBP metabolic pathway was reconstructed by genome annotation and intermediate identification. Streptomyces species have an open pangenome with substantial genome expansion events during the evolutionary process, enabling extensive genetic diversity and highly plastic genomes within the Streptomyces genus. FZ201 had a diverse array of highly expressed genes associated with the degradation of PAEs, potentially contributing significantly to its adaptive advantage and efficiency of PAE degradation. Thus, FZ201 is a promising candidate for remediating highly PAE-contaminated environments. These findings enhance our preliminary understanding of the molecular mechanisms employed by Streptomyces for the removal of PAEs.
Collapse
Affiliation(s)
- Nai-Xian Feng
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fei Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Bin
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Tong Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bai-Lin Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - De-Lin Xu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yunchang Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China.
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Tadielo LE, Dos Santos EAR, Possebon FS, Schmiedt JA, Juliano LCB, Cerqueira-Cézar CK, de Oliveira JP, Sampaio ANDCE, Melo PRL, Caron EFF, Pinto JPDAN, Bersot LDS, Pereira JG. Characterization of microbial ecology, Listeria monocytogenes, and Salmonella sp. on equipment and utensil surfaces in Brazilian poultry, pork, and dairy industries. Food Res Int 2023; 173:113422. [PMID: 37803760 DOI: 10.1016/j.foodres.2023.113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 10/08/2023]
Abstract
This study aimed to evaluate the level of counting by indicator microorganisms, identify the microbial ecology, detect Listeria monocytogenes and Salmonella sp., and determine the presence of virulence genes and biofilm formation. A total of 480 samples were collected from the surfaces of the equipment and utensils using sterile swabs for the detection of L. monocytogenes and Salmonella sp. and counting mesophilic aerobes, Enterobacteriaceae, Escherichia coli, and Pseudomonas sp. The microbial ecology was evaluated by sequencing the 16S rRNA gene. Genes for virulence and biofilm formation were analyzed and adhesion capacity was evaluated for L. monocytogenes and Salmonella sp. The mesophilic aerobe count was the highest in the dairy processing facility, followed by the pork and poultry slaughterhouses. L. monocytogenes was detected in all facilities, with the highest detection in the pork slaughterhouse, followed by the poultry and dairy facilities. Salmonella sp. was only detected in the dairy. Isolates of L. monocytogenes and Salmonella sp. showed poor adhesion to polystyrene surfaces, virulence genes, and biofilm formation. The frequent contaminants in the slaughterhouses were Pseudomonas, Acinetobacter, and Aeromonas in poultry, Acinetobacter, Pseudomonas, and Brevundimonas in pork, and Pseudomonas, Kocuria, and Staphylococcus in dairy. Our results provide useful information to understand the microbiological risks associated with contamination.
Collapse
Affiliation(s)
- Leonardo Ereno Tadielo
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Emanoelli Aparecida Rodrigues Dos Santos
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Fábio Sossai Possebon
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Jhennifer Arruda Schmiedt
- Federal University of Paraná (UFPR), Palotina Campus, Department of Veterinary Sciences, Rua Pioneiro, 2153, Jardim Dallas, 85950-000 Palotina, PR, Brazil
| | - Lara Cristina Bastos Juliano
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Camila Koutsodontis Cerqueira-Cézar
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Janaina Prieto de Oliveira
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Aryele Nunes da Cruz Encide Sampaio
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Patrícia Regina Lopes Melo
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Evelyn Fernanda Flores Caron
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - José Paes de Almeida Nogueira Pinto
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Luciano Dos Santos Bersot
- Federal University of Paraná (UFPR), Palotina Campus, Department of Veterinary Sciences, Rua Pioneiro, 2153, Jardim Dallas, 85950-000 Palotina, PR, Brazil.
| | - Juliano Gonçalves Pereira
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil.
| |
Collapse
|
6
|
She Y, Liu J, Su M, Li Y, Guo Y, Liu G, Deng M, Qin H, Sun B, Guo J, Liu D. A Study on Differential Biomarkers in the Milk of Holstein Cows with Different Somatic Cells Count Levels. Animals (Basel) 2023; 13:2446. [PMID: 37570255 PMCID: PMC10417570 DOI: 10.3390/ani13152446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Dairy cow mastitis is one of the common diseases of dairy cows, which will not only endanger the health of dairy cows but also affect the quality of milk. Dairy cow mastitis is an inflammatory reaction caused by pathogenic microorganisms and physical and chemical factors in dairy cow mammary glands. The number of SCC in the milk of dairy cows with different degrees of mastitis will increase in varying degrees. The rapid diagnosis of dairy cow mastitis is of great significance for dairy cow health and farm economy. Based on the results of many studies on the relationship between mastitis and somatic cell count in dairy cows, microflora, and metabolites in the milk of Holstein cows with low somatic cell level (SCC less than 200,000), medium somatic cell level (SCC up to 200,000 but less than 500,000) and high somatic cell level (SCC up to 5000,00) were analyzed by microbiome and metabolic group techniques. The results showed that there were significant differences in milk microbiota and metabolites among the three groups (p < 0.05), and there was a significant correlation between microbiota and metabolites. Meanwhile, in this experiment, 75 differential metabolites were identified in the H group and L group, 40 differential metabolites were identified in the M group and L group, and six differential microorganisms with LDA scores more than four were found in the H group and L group. These differential metabolites and differential microorganisms may become new biomarkers for the diagnosis, prevention, and treatment of cow mastitis in the future.
Collapse
Affiliation(s)
- Yuanhang She
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Jianying Liu
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510500, China; (J.L.)
- Guangdong Provincial Animal Husbandry Technology Promotion Station, Guangzhou 510500, China
| | - Minqiang Su
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Yaokun Li
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Yongqing Guo
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Guangbin Liu
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Ming Deng
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Hongxian Qin
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510500, China; (J.L.)
- Guangdong Provincial Animal Husbandry Technology Promotion Station, Guangzhou 510500, China
| | - Baoli Sun
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
| | - Jianchao Guo
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510500, China; (J.L.)
- Guangdong Provincial Animal Husbandry Technology Promotion Station, Guangzhou 510500, China
| | - Dewu Liu
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.S.); (M.S.)
- Collaborative Innovation Center for Healthy Sheep Breeding and Zoonoses Prevention and Control, Shihezi University, Shihezi 832000, China
| |
Collapse
|
7
|
Li XD, Lin YC, Yang RS, Kang X, Xin WG, Wang F, Zhang QL, Zhang WP, Lin LB. Genomic and in-vitro characteristics of a novel strain Lacticaseibacillus chiayiensis AACE3 isolated from fermented blueberry. Front Microbiol 2023; 14:1168378. [PMID: 37275148 PMCID: PMC10235500 DOI: 10.3389/fmicb.2023.1168378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Numerous different species of LAB are used in different fields due to their unique characteristics. However, Lacticaseibacillus chiayiensis, a newly established species in 2018, has limited microorganism resources, and lacks comprehensive evaluations of its properties. In this study, L. chiayiensis AACE3, isolated from fermented blueberry, was evaluated by genomic analysis and in vitro assays of the properties. The genome identified genes associated with biofilm formation (luxS, ccpA, brpA), resistance to oxidative stress (tpx, trxA, trxB, hslO), tolerance to acidic conditions (dltA, dltC), resistance to unfavorable osmotic pressure (opuBB, gbuA, gbuB, gbuC), and adhesion (luxS, dltA, dltC). The AACE3 showed 112 unique genes, relative to the other three L. chiayiensis strains. Among them, the presence of genes such as clpP, pepO, and feoA suggests a possible advantage of AACE3 over other L. chiayiensis in terms of environmental adaptation. In vitro evaluation of the properties revealed that AACE3 had robust antibacterial activity against eight common pathogens: Streptococcus agalactiae, Staphylococcus aureus, Escherichia coli, Salmonella enteritidis, Salmonella choleraesuis, Shigella flexneri, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In addition, AACE3 showed more than 80% survival rate in all tests simulating gastrointestinal fluid, and it exhibited high antioxidant capacity. Interestingly, the cell culture supernatant was superior to intact organisms and ultrasonically crushed bacterial extracts in all tests of antioxidant capacity. These results suggested that the antioxidant capacity may originate from certain metabolites and extracellular enzymes produced by AACE3. Moreover, AACE3 was a moderate biofilm producer due to the self-agglomeration effect. Taken together, L. chiayiensis AACE3 appears to be a candidate strain for combating the growing incidence of pathogen infections and antioxidant production.
Collapse
Affiliation(s)
- Xin-Dong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Yi-Cen Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Rui-Si Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Xin Kang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Wen-Ping Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| |
Collapse
|
8
|
Biodegradation of Oil by a Newly Isolated Strain Acinetobacter junii WCO-9 and Its Comparative Pan-Genome Analysis. Microorganisms 2023; 11:microorganisms11020407. [PMID: 36838372 PMCID: PMC9967506 DOI: 10.3390/microorganisms11020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Waste oil pollution and the treatment of oily waste present a challenge, and the exploitation of microbial resources is a safe and efficient method to resolve these problems. Lipase-producing microorganisms can directly degrade waste oil and promote the degradation of oily waste and, therefore, have very significant research and application value. The isolation of efficient oil-degrading strains is of great practical significance in research into microbial remediation in oil-contaminated environments and for the enrichment of the microbial lipase resource library. In this study, Acinetobacter junii WCO-9, an efficient oil-degrading bacterium, was isolated from an oil-contaminated soil using olive oil as the sole carbon source, and its enzyme activity of ρ-nitrophenyl decanoate (ρ-NPD) decomposition was 3000 U/L. The WCO-9 strain could degrade a variety of edible oils, and its degradation capability was significantly better than that of the control strain, A junii ATCC 17908. Comparative pan-genome and lipid degradation pathway analyses indicated that A. junii isolated from the same environment shared a similar set of core genes and that the species accumulated more specific genes that facilitated resistance to environmental stresses under different environmental conditions. WCO-9 has accumulated a complete set of oil metabolism genes under a long-term oil-contamination environment, and the compact arrangement of abundant lipase and lipase chaperones has further strengthened the ability of the strain to survive in such environments. This is the main reason why WCO-9 is able to degrade oil significantly more effectively than ATCC 17908. In addition, WCO-9 possesses a specific lipase that is not found in homologous strains. In summary, A. junii WCO-9, with a complete triglyceride degradation pathway and the specific lipase gene, has great potential in environmental remediation and lipase for industry.
Collapse
|
9
|
Cuetero-Martínez Y, Flores-Ramírez A, De Los Cobos-Vasconcelos D, Aguirre-Garrido JF, López-Vidal Y, Noyola A. Removal of bacterial pathogens and antibiotic resistance bacteria by anaerobic sludge digestion with thermal hydrolysis pre-treatment and alkaline stabilization post-treatment. CHEMOSPHERE 2023; 313:137383. [PMID: 36436581 DOI: 10.1016/j.chemosphere.2022.137383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Primary sludge (PS) is associated with public health and environmental risks, so regulations focus on reducing the pathogenic and heavy metal contents of the treated material (biosolids), intended for soil amendments and land reclamation. The regulations set limits for Escherichia coli (or fecal coliforms), Salmonella spp., helminth eggs and enterovirus. However, the potential risk due to antibiotic resistant bacteria (ARB) and other human potential pathogenic bacteria (HPB) are not considered. In this work, three sludge treatment processes, having in common an anaerobic digestion step, were applied to assess the removal of regulated bacteria (fecal coliforms, Salmonella spp), ARB and HPB. The treatment arrangements, fed with PS from a full-scale wastewater treatment plant were: 1) Mesophilic anaerobic digestion followed by alkaline stabilization post-treatment (MAD-CaO); 2) Thermophilic anaerobic digestion (TAD) and, 3) Pre-treatment (mild thermo-hydrolysis) followed by TAD (PT-TAD). The results address the identification, quantification (colony forming units) and taxonomic characterization of ARB resistant to β-lactams and vancomycin, as well as the taxonomic characterization of HPB by sequencing with PacBio. In addition, quantification based on culture media of fecal coliforms and Salmonella spp. is presented. The capabilities and limitations of microbiological and metataxonomomic analyses based on PacBio sequencing are discussed, emphasizing that they complement each other. Genus Aeromonas, Acinetobacter, Citrobacter, Enterobacter, Escherichia, Klebsiella, Ochrobactrum, Pseudomonas and Raoultella, among others, were found in the PS, which are of clinical or environmental importance, being either HPB, HPB-ARB, or non-pathogenic ARB with the potentiality of horizontal gene transfer. Based on the analysis of fecal coliforms and Salmonella spp., the three processes produced class A (highest) biosolids, suitable for unrestricted agriculture applications. Mild thermo-hydrolisis was effective in decreasing ARB cultivability, but it reappeared after the following TAD. O. intermedium (HPB-ARB) was enriched in MAD and TAD while Laribacter hongkongensis (HPB) did persist after the applied treatments.
Collapse
Affiliation(s)
- Yovany Cuetero-Martínez
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico; Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - Aarón Flores-Ramírez
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - Daniel De Los Cobos-Vasconcelos
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana - Unidad Lerma, 52005 Lerma de Villada, Edo. Mex, Mexico
| | - Yolanda López-Vidal
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - Adalberto Noyola
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico.
| |
Collapse
|
10
|
Zhao Y, Wei HM, Yuan JL, Xu L, Sun JQ. A comprehensive genomic analysis provides insights on the high environmental adaptability of Acinetobacter strains. Front Microbiol 2023; 14:1177951. [PMID: 37138596 PMCID: PMC10149724 DOI: 10.3389/fmicb.2023.1177951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Acinetobacter is ubiquitous, and it has a high species diversity and a complex evolutionary pattern. To elucidate the mechanism of its high ability to adapt to various environment, 312 genomes of Acinetobacter strains were analyzed using the phylogenomic and comparative genomics methods. It was revealed that the Acinetobacter genus has an open pan-genome and strong genome plasticity. The pan-genome consists of 47,500 genes, with 818 shared by all the genomes of Acinetobacter, while 22,291 are unique genes. Although Acinetobacter strains do not have a complete glycolytic pathway to directly utilize glucose as carbon source, most of them harbored the n-alkane-degrading genes alkB/alkM (97.1% of tested strains) and almA (96.7% of tested strains), which were responsible for medium-and long-chain n-alkane terminal oxidation reaction, respectively. Most Acinetobacter strains also have catA (93.3% of tested strains) and benAB (92.0% of tested strains) genes that can degrade the aromatic compounds catechol and benzoic acid, respectively. These abilities enable the Acinetobacter strains to easily obtain carbon and energy sources from their environment for survival. The Acinetobacter strains can manage osmotic pressure by accumulating potassium and compatible solutes, including betaine, mannitol, trehalose, glutamic acid, and proline. They respond to oxidative stress by synthesizing superoxide dismutase, catalase, disulfide isomerase, and methionine sulfoxide reductase that repair the damage caused by reactive oxygen species. In addition, most Acinetobacter strains contain many efflux pump genes and resistance genes to manage antibiotic stress and can synthesize a variety of secondary metabolites, including arylpolyene, β-lactone and siderophores among others, to adapt to their environment. These genes enable Acinetobacter strains to survive extreme stresses. The genome of each Acinetobacter strain contained different numbers of prophages (0-12) and genomic islands (GIs) (6-70), and genes related to antibiotic resistance were found in the GIs. The phylogenetic analysis revealed that the alkM and almA genes have a similar evolutionary position with the core genome, indicating that they may have been acquired by vertical gene transfer from their ancestor, while catA, benA, benB and the antibiotic resistance genes could have been acquired by horizontal gene transfer from the other organisms.
Collapse
Affiliation(s)
- Yang Zhao
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Hua-Mei Wei
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jia-Li Yuan
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lian Xu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ji-Quan Sun
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- *Correspondence: Ji-Quan Sun,
| |
Collapse
|
11
|
Pan-Genome Analysis of Staphylococcus aureus Reveals Key Factors Influencing Genomic Plasticity. Microbiol Spectr 2022; 10:e0311722. [PMID: 36318042 PMCID: PMC9769869 DOI: 10.1128/spectrum.03117-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The massive quantities of bacterial genomic data being generated have facilitated in-depth analyses of bacteria for pan-genomic studies. However, the pan-genome compositions of one species differed significantly between different studies, so we used Staphylococcus aureus as a model organism to explore the influences driving bacterial pan-genome composition. We selected a series of diverse strains for pan-genomic analysis to explore the pan-genomic composition of S. aureus at the species level and the actual contribution of influencing factors (sequence type [ST], source of isolation, country of isolation, and date of collection) to pan-genome composition. We found that the distribution of core genes in bacterial populations restrained under different conditions differed significantly and showed "local core gene regions" in the same ST. Therefore, we propose that ST may be a key factor driving the dynamic distribution of bacterial genomes and that phylogenetic analyses using whole-genome alignment are no longer appropriate in populations containing multiple ST strains. Pan-genomic analysis showed that some of the housekeeping genes of multilocus sequence typing (MLST) are carried at less than 60% in S. aureus strains. Consequently, we propose a new set of marker genes for the classification of S. aureus, which provides a reference for finding a new set of housekeeping genes to apply to MLST. In this study, we explored the role of driving factors influencing pan-genome composition, providing new insights into the study of bacterial pan-genomes. IMPORTANCE We sought to explore the impact of driving factors influencing pan-genome composition using Staphylococcus aureus as a model organism to provide new insights for the study of bacterial pan-genomes. We believe that the sequence type (ST) of the strains under consideration plays a significant role in the dynamic distribution of bacterial genes. Our findings indicate that there are a certain number of essential genes in Staphylococcus aureus; however, the number of core genes is not as high as previously thought. The new classification method proposed herein suggests that a new set of housekeeping genes more suitable for Staphylococcus aureus must be identified to improve the current classification status of this species.
Collapse
|
12
|
Plasmids as Key Players in Acinetobacter Adaptation. Int J Mol Sci 2022; 23:ijms231810893. [PMID: 36142804 PMCID: PMC9501444 DOI: 10.3390/ijms231810893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
This review briefly summarizes the data on the mechanisms of development of the adaptability of Acinetobacters to various living conditions in the environment and in the clinic. A comparative analysis of the genomes of free-living and clinical strains of A. lwoffii, as well as the genomes of A. lwoffii and A. baumannii, has been carried out. It has been shown that plasmids, both large and small, play a key role in the formation of the adaptability of Acinetobacter to their living conditions. In particular, it has been demonstrated that the plasmids of various strains of Acinetobacter differ from each other in their structure and gene composition depending on the lifestyle of their host bacteria. Plasmids of modern strains are enriched with antibiotic-resistant genes, while the content of genes involved in resistance to heavy metals and arsenic is comparable to plasmids from modern and ancient strains. It is concluded that Acinetobacter plasmids may ensure the survival of host bacteria under conditions of various types of environmental and clinical stresses. A brief overview of the main mechanisms of horizontal gene transfer on plasmids inherent in Acinetobacter strains is also given.
Collapse
|
13
|
Favale N, Costa S, Scapoli C, Carrieri A, Sabbioni S, Tamburini E, Benazzo A, Bernacchia G. Reconstruction of Acinetobacter johnsonii ICE_NC genome using hybrid de novo genome assemblies and identification of the 12α-hydroxysteroid dehydrogenase gene. J Appl Microbiol 2022; 133:1506-1519. [PMID: 35686660 PMCID: PMC9540589 DOI: 10.1111/jam.15657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022]
Abstract
AIMS The role of a Acinetobacter johnsonii strain, isolated from a soil sample, in the biotransformation of bile acids (BAs) was already described but the enzymes responsible for these transformations were only partially purified and molecularly characterized. METHODS AND RESULTS This study describes the use of hybrid de novo assemblies, that combine long-read Oxford Nanopore and short-read Illumina sequencing strategies, to reconstruct the entire genome of A. johnsonii ICE_NC strain and to identify the coding region for a 12α-hydroxysteroid dehydrogenase (12α-HSDH), involved in BAs metabolism. The de novo assembly of the A. johnsonii ICE_NC genome was generated using Canu and Unicycler, both strategies yielded a circular chromosome of about 3.6 Mb and one 117 kb long plasmid. Gene annotation was performed on the final assemblies and the gene for 12α-HSDH was detected on the plasmid. CONCLUSIONS Our findings illustrate the added value of long read sequencing in addressing the challenges of whole genome characterization and plasmid reconstruction in bacteria. These approaches also allowed the identification of the A. johnsonii ICE_NC gene for the 12α-HSDH enzyme, whose activity was confirmed at the biochemical level. SIGNIFICANCE AND IMPACT OR THE STUDY At present, this is the first report on the characterization of a 12α-HSDH gene in an A. johnsonii strain able to biotransform cholic acid into ursodeoxycholic acid, a promising therapeutic agent for several diseases.
Collapse
Affiliation(s)
- Nicoletta Favale
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Stefania Costa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alberto Carrieri
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Silvia Sabbioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elena Tamburini
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
14
|
Kim E, Yang SM, Kim D, Kim HY. Complete Genome Sequencing and Comparative Genomics of Three Potential Probiotic Strains, Lacticaseibacillus casei FBL6, Lacticaseibacillus chiayiensis FBL7, and Lacticaseibacillus zeae FBL8. Front Microbiol 2022; 12:794315. [PMID: 35069490 PMCID: PMC8777060 DOI: 10.3389/fmicb.2021.794315] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022] Open
Abstract
Lacticaseibacillus casei, Lacticaseibacillus chiayiensis, and Lacticaseibacillus zeae are very closely related Lacticaseibacillus species. L. casei has long been proposed as a probiotic, whereas studies on functional characterization for L. chiayiensis and L. zeae are some compared to L. casei. In this study, L. casei FBL6, L. chiayiensis FBL7, and L. zeae FBL8 were isolated from raw milk, and their probiotic properties were investigated. Genomic analysis demonstrated the role of L. chiayiensis and L. zeae as probiotic candidates. The three strains were tolerant to acid and bile salt, with inhibitory action against pathogenic bacterial strains and capacity of antioxidants. Complete genome sequences of the three strains were analyzed to highlight the probiotic properties at the genetic level, which results in the discovery of genes corresponding to phenotypic characterization. Moreover, genes known to confer probiotic characteristics were identified, including genes related to biosynthesis, defense machinery, adhesion, and stress adaptation. The comparative genomic analysis with other available genomes revealed 256, 214, and 32 unique genes for FBL6, FBL7, and FBL8, respectively. These genomes contained individual genes encoding proteins that are putatively involved in carbohydrate transport and metabolism, prokaryotic immune system for antiviral defense, and physiological control processes. In particular, L. casei FBL6 had a bacteriocin gene cluster that was not present in other genomes of L. casei, resulting in this strain may exhibit a wide range of antimicrobial activity compared to other L. casei strains. Our data can help us understand the probiotic functionalities of the three strains and suggest that L. chiayiensis and L. zeae species, which are closely related to L. casei, can also be considered as novel potential probiotic candidate strains.
Collapse
Affiliation(s)
- Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Dayoung Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| |
Collapse
|