1
|
Dai Y, Ying Y, Zhu G, Xu Y, Ji K. STAT3 drives the expression of HIF1alpha in cancer cells through a novel super-enhancer. Biochem Biophys Res Commun 2024; 735:150483. [PMID: 39098275 DOI: 10.1016/j.bbrc.2024.150483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Aerobic glycolysis is one of the major hallmarks of malignant tumors. This metabolic reprogramming benefits the rapid proliferation of cancer cells, facilitates the formation of tumor microenvironment to support their growth and survival, and impairs the efficacy of various tumor therapies. Therefore, the elucidation of the mechanisms driving aerobic glycolysis in tumors represents a pivotal breakthrough in developing therapeutic strategies for solid tumors. HIF1α serves as a central regulator of aerobic glycolysis with elevated mRNA and protein expression across multiple tumor types. However, the mechanisms contributing to this upregulation remain elusive. This study reports the identification of a novel HIF1α super enhancer (HSE) in multiple cancer cells using bioinformatics analysis, chromosome conformation capture (3C), chromatin immunoprecipitation (ChIP), and CRISPR/Cas9 genome editing techniques. Deletion of HSE in cancer cells significantly reduces the expression of HIF1α, glycolysis, cell proliferation, colony and tumor formation ability, confirming the role of HSE as the enhancer of HIF1α in cancer cells. Particularly, we demonstrated that STAT3 promotes the expression of HIF1α by binding to HSE. The discovery of HSE will help elucidate the pathways driving tumor aerobic glycolysis, offering new therapeutic targets and potentially resolving the bottleneck in solid tumor treatment.
Collapse
Affiliation(s)
- Yonghui Dai
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yue Ying
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Gaoyang Zhu
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yang Xu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0322, USA.
| | - Kaiyuan Ji
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| |
Collapse
|
2
|
Hamel Z, Sanchez S, Standing D, Anant S. Role of STAT3 in pancreatic cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:20-34. [PMID: 38464736 PMCID: PMC10918236 DOI: 10.37349/etat.2024.00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 03/12/2024] Open
Abstract
Pancreatic cancer remains a serious and deadly disease, impacting people globally. There remain prominent gaps in the current understanding of the disease, specifically regarding the role of the signal transducer and activator of transcription (STAT) family of proteins in pancreatic tumors. STAT proteins, particularly STAT3, play important roles in pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), which is the most prevalent histotype. The role of STAT3 across a continuum of molecular processes, such as PDAC tumorigenesis and progression, immune escape, drug resistance and stemness, and modulation of the tumor microenvironment (TME), are only a tip of the iceberg. In some ways, the role of STAT3 in PDAC may hold greater importance than that of oncogenic Kirsten rat sarcoma virus (KRAS). This makes STAT3 a highly attractive target for developing targeted therapies for the treatment of pancreatic cancer. In this review, the current knowledge of STAT3 in pancreatic cancer has been summarized, particularly relating to STAT3 activation in cancer cells, cells of the TME, and the state of targeting STAT3 in pre-clinical and clinical trials of PDAC.
Collapse
Affiliation(s)
- Zachary Hamel
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sierra Sanchez
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
3
|
Dinarello A, Mills TS, Tengesdal IW, Powers NE, Azam T, Dinarello CA. Dexamethasone and OLT1177 Cooperate in the Reduction of Melanoma Growth by Inhibiting STAT3 Functions. Cells 2023; 12:294. [PMID: 36672229 PMCID: PMC9856388 DOI: 10.3390/cells12020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The NLRP3 inflammasome is a multimolecular complex that processes inactive IL-1β and IL-18 into proinflammatory cytokines. OLT1177 is an orally active small compound that specifically inhibits NLRP3. Here, B16F10 melanoma were implanted in mice and treated with OLT1177 as well as combined with the glucocorticoid dexamethasone. At sacrifice, OLT1177 treated mice had significantly smaller tumors compared to tumor-bearing mice treated with vehicle. However, the combined treatment of OLT1177 plus dexamethasone revealed a greater suppression of tumor growth. This reduction was accompanied by a downregulation of nuclear and mitochondrial STAT3-dependent gene transcription and by a significant reduction of STAT3 Y705 and S727 phosphorylations in the tumors. In vitro, the human melanoma cell line 1205Lu, stimulated with IL-1α, exhibited significantly lower levels of STAT3 Y705 phosphorylation by the combination treatment, thus affecting the nuclear functions of STAT3. In the same cells, STAT3 serine 727 phosphorylation was also lower, affecting the mitochondrial functions of STAT3. In addition, metabolic analyses revealed a marked reduction of ATP production rate and glycolytic reserve in cells treated with the combination of OLT1177 plus dexamethasone. These findings demonstrate that the combination of OLT1177 and dexamethasone reduces tumor growth by targeting nuclear as well as mitochondrial functions of STAT3.
Collapse
Affiliation(s)
- Alberto Dinarello
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
| | - Taylor S. Mills
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
| | - Isak W. Tengesdal
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Nicholas E. Powers
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
| | - Tania Azam
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
4
|
Yang Y, Yang Y, Liu J, Zeng Y, Guo Q, Guo J, Guo L, Lu H, Liu W. Establishment and validation of a carbohydrate metabolism-related gene signature for prognostic model and immune response in acute myeloid leukemia. Front Immunol 2022; 13:1038570. [PMID: 36544784 PMCID: PMC9761472 DOI: 10.3389/fimmu.2022.1038570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 12/10/2022] Open
Abstract
Introduction The heterogeneity of treatment response in acute myeloid leukemia (AML) patients poses great challenges for risk scoring and treatment stratification. Carbohydrate metabolism plays a crucial role in response to therapy in AML. In this multicohort study, we investigated whether carbohydrate metabolism related genes (CRGs) could improve prognostic classification and predict response of immunity and treatment in AML patients. Methods Using univariate regression and LASSO-Cox stepwise regression analysis, we developed a CRG prognostic signature that consists of 10 genes. Stratified by the median risk score, patients were divided into high-risk group and low-risk group. Using TCGA and GEO public data cohorts and our cohort (1031 non-M3 patients in total), we demonstrated the consistency and accuracy of the CRG score on the predictive performance of AML survival. Results The overall survival (OS) was significantly shorter in high-risk group. Differentially expressed genes (DEGs) were identified in the high-risk group compared to the low-risk group. GO and GSEA analysis showed that the DEGs were mainly involved in immune response signaling pathways. Analysis of tumor-infiltrating immune cells confirmed that the immune microenvironment was strongly suppressed in high-risk group. The results of potential drugs for risk groups showed that inhibitors of carbohydrate metabolism were effective. Discussion The CRG signature was involved in immune response in AML. A novel risk model based on CRGs proposed in our study is promising prognostic classifications in AML, which may provide novel insights for developing accurate targeted cancer therapies.
Collapse
Affiliation(s)
- You Yang
- Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Yan Yang
- Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Jing Liu
- Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Yan Zeng
- Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Qulian Guo
- Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Jing Guo
- The Second Hospital, Center for Reproductive Medicine, Advanced Medical Research Institute, and Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ling Guo
- Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Haiquan Lu
- Department of Hematology, The Affiliated Hospital of Southwest Medical University. Luzhou, Sichuan, China
| | - Wenjun Liu
- Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Cusenza VY, Bonora E, Amodio N, Frazzi R. Spartin: At the crossroad between ubiquitination and metabolism in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188813. [PMID: 36195276 DOI: 10.1016/j.bbcan.2022.188813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 12/01/2022]
Abstract
SPART is a gene coding for a multifunctional protein called spartin, localized in various organelles of human cells. Mutations in the coding region are responsible for a hereditary form of spastic paraplegia called Troyer syndrome while the epigenetic silencing has been demonstrated for some types of tumors. The main functions of this gene are associated to endosomic trafficking and receptor degradation, microtubule interaction, cytokinesis, fatty acids and oxidative metabolism. Spartin has been shown to be a target regulated by STAT3 and localizes also at the level of the mitochondrial outer membrane, where it forms part of a complex maintaining the integrity of the membrane potential. The most recent evidences report a downregulation of spartin in tumor tissues when compared to adjacent normal samples. This intriguing evidence supports further research aimed at clarifying the role of this protein in cancer development and metabolism.
Collapse
Affiliation(s)
- Vincenza Ylenia Cusenza
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elena Bonora
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Raffaele Frazzi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|