1
|
Wang Y, Li Q, Ma Z, Xu H, Peng F, Chen B, Ma B, Qin L, Lan J, Li Y, Lan D, Li J, Wang S, Fu W. β-Nicotinamide Mononucleotide Alleviates Hydrogen Peroxide-Induced Cell Cycle Arrest and Death in Ovarian Granulosa Cells. Int J Mol Sci 2023; 24:15666. [PMID: 37958650 PMCID: PMC10649918 DOI: 10.3390/ijms242115666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Maintaining normal functions of ovarian granulosa cells (GCs) is essential for oocyte development and maturation. The dysfunction of GCs impairs nutrition supply and estrogen secretion by follicles, thus negatively affecting the breeding capacity of farm animals. Impaired GCs is generally associated with declines in Nicotinamide adenine dinucleotide (NAD+) levels, which triggers un-controlled oxidative stress, and the oxidative stress, thus, attack the subcellular structures and cause cell damage. β-nicotinamide mononucleotide (NMN), a NAD+ precursor, has demonstrated well-known antioxidant properties in several studies. In this study, using two types of ovarian GCs (mouse GCs (mGCs) and human granulosa cell line (KGN)) as cell models, we aimed to investigate the potential effects of NMN on gene expression patterns and antioxidant capacity of both mGCs and KGN that were exposed to hydrogen peroxide (H2O2). As shown in results of the study, mGCs that were exposed to H2O2 significantly altered the gene expression patterns, with 428 differentially expressed genes (DEGs) when compared with those of the control group. Furthermore, adding NMN to H2O2-cultured mGCs displayed 621 DEGs. The functional enrichment analysis revealed that DEGs were mainly enriched in key pathways like cell cycle, senescence, and cell death. Using RT-qPCR, CCK8, and β-galactosidase staining, we found that H2O2 exposure on mGCs obviously reduced cell activity/mRNA expressions of antioxidant genes, inhibited cell proliferation, and induced cellular senescence. Notably, NMN supplementation partially prevented these H2O2-induced abnormalities. Moreover, these similar beneficial effects of NMN on antioxidant capacity were confirmed in the KGN cell models that were exposed to H2O2. Taken together, the present results demonstrate that NMN supplementation protects against H2O2-induced impairments in gene expression pattern, cell cycle arrest, and cell death in ovarian GCs through boosting NAD+ levels and provide potential strategies to ameliorate uncontrolled oxidative stress in ovarian GCs.
Collapse
Affiliation(s)
- Yunduan Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chendu 610041, China; (Y.W.); (H.X.); (J.L.)
| | - Qiao Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chendu 610041, China; (Y.W.); (H.X.); (J.L.)
| | - Zifeng Ma
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chendu 610041, China; (Y.W.); (H.X.); (J.L.)
| | - Hongmei Xu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chendu 610041, China; (Y.W.); (H.X.); (J.L.)
| | - Feiyu Peng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chendu 610041, China; (Y.W.); (H.X.); (J.L.)
| | - Bin Chen
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chendu 610041, China; (Y.W.); (H.X.); (J.L.)
| | - Bo Ma
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chendu 610041, China; (Y.W.); (H.X.); (J.L.)
| | - Linmei Qin
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chendu 610041, China; (Y.W.); (H.X.); (J.L.)
| | - Jiachen Lan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chendu 610041, China; (Y.W.); (H.X.); (J.L.)
| | - Yueyue Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chendu 610041, China; (Y.W.); (H.X.); (J.L.)
| | - Daoliang Lan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chendu 610041, China; (Y.W.); (H.X.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China
| | - Jian Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chendu 610041, China; (Y.W.); (H.X.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400032, China
| | - Wei Fu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chendu 610041, China; (Y.W.); (H.X.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
2
|
Shen M, Cai R, Li Z, Chen X, Xie J. The Molecular Mechanism of Yam Polysaccharide Protected H 2O 2-Induced Oxidative Damage in IEC-6 Cells. Foods 2023; 12:foods12020262. [PMID: 36673354 PMCID: PMC9857669 DOI: 10.3390/foods12020262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Oxidative stress is involved in maintaining homeostasis of the body, and an in-depth study of its mechanism of action is beneficial for the prevention of chronic illnesses. This study aimed to investigate the protective mechanism of yam polysaccharide (CYP) against H2O2-induced oxidative damage by an RNA-seq technique. The expression of genes and the function of the genome in the process of oxidative damage by H2O2 in IEC-6 cells were explored through transcriptomic analysis. The results illustrated that H2O2 damaged cells by promoting cell differentiation and affecting tight junction proteins, and CYP could achieve cell protection via restraining the activation of the MAPK signaling pathway. RNA-seq analysis revealed that H2O2 may damage cells by promoting the IL-17 signaling pathway and the MAPK signaling pathway and so forth. The Western blot showed that the pretreatment of CYP could restrain the activation of the MAPK signaling pathway. In summary, this study demonstrates that the efficacy of CYP in modulating the MAPK signaling pathway against excessive oxidative stress, with a corresponding preventive role against injury to the intestinal barrier. It provides a new perspective for the understanding of the preventive role of CYP on intestinal damage. These findings suggest that CYP could be used as oxidation protectant and may have potential application prospects in the food and pharmaceutical industries.
Collapse
|
3
|
Li W, Yin X, Yan Y, Liu C, Li G. Kurarinone attenuates hydrogen peroxide-induced oxidative stress and apoptosis through activating the PI3K/Akt signaling by upregulating IGF1 expression in human ovarian granulosa cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:28-38. [PMID: 36114797 DOI: 10.1002/tox.23659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Dysregulated follicular development may lead to follicular atresia, and this is associated with oxidative stress in granulosa cells. Kurarinone is a natural compound possessing multiple activities, including antioxidative ability. However, the role of kurarinone in granulosa cell damage during follicular atresia remains unknown. Human ovarian granulosa KGN cells were treated with hydrogen peroxide (H2 O2 ) to induce cellular damage. Cytotoxicity was investigated by lactate dehydrogenase (LDH) release assay. Oxidative stress was evaluated by detection of reactive oxygen species (ROS) generation and oxidative biomarker levels. Cell apoptosis was evaluated by flow cytometry, a Cell Death Detection ELISA Kit, and a Caspase-3 Assay Kit. The downstream target and related signaling pathway were analyzed by western blotting. Kurarinone attenuated H2 O2 -induced LDH release in KGN cells. Kurarinone relieved H2 O2 -induced increase in ROS generation and malondialdehyde level as well as decrease in superoxide dismutase-1 activity and heme oxygenase 1 and NAD(P)H quinone dehydrogenase 1 mRNA levels. Kurarinone inhibited H2 O2 -induced apoptosis in KGN cells. Kurarinone targeted insulin-like growth factor 1 (IGF1) and upregulated IGF1 expression to activate the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling. IGF1 silencing attenuated the suppressive effects of kurarinone on H2 O2 -induced oxidative stress and apoptosis in KGN cells. In conclusion, kurarinone attenuates H2 O2 -induced oxidative stress and apoptosis in KGN cells through activating the PI3K/Akt signaling by upregulating IGF1 expression, indicating the therapeutic potential of kurarinone in follicular atresia.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, China
| | - Xiurong Yin
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, China
| | - Yani Yan
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, China
| | - Cong Liu
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, China
| | - Gang Li
- Department of Surgical Anesthesiology, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
4
|
Zhu H, Guan X, Pu L, Shen L, Hua H. Acute toxicity, biochemical and transcriptomic analysis of Procambarus clarkii exposed to avermectin. PEST MANAGEMENT SCIENCE 2023; 79:206-215. [PMID: 36129128 DOI: 10.1002/ps.7189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pesticides are extensively applied globally. Pesticide residues induce calamitous effects on the environment and untargeted organisms. Public concerns for the safety of freshwater organisms and the challenges posed by aquatic contaminants remain high. In the present study, the acute toxicity of avermectins (AVMs) to the crayfish, Procambarus clarkii was evaluated. We also evaluated the potential effects of AVM on the biochemical and transcriptomic status of the hepatopancreas and gastrointestinal tract in P. clarkii. RESULTS The 24, 48, 72, 96 h median lethal concentrations (LC50 ) of AVM on crayfish were 2.626, 1.162, 0.723, 0.566 mg L-1 , respectively. The crayfish were then exposed to 0.65 mg L-1 of AVM for 96 h. AVM significantly altered biochemical parameters including AChE and CAT activities in the hepatopancreas, and AChE, SOD and Na + -K + -ATPase activities in the gastrointestinal tract at several time points. Furthermore, transcriptomic analysis identified 953 and 1851 differentially-expressed genes (DEGs) in the hepatopancreas and gastrointestinal tract, respectively. KEGG enrichment showed that the gene expression profiles of the hepatopancreas and gastrointestinal tract were distinct from each other. The DEGs in the hepatopancreas were mostly enriched with stress-response pathways, while the majority of the DEGs in the gastrointestinal tract belonged to metabolism-related pathways. CONCLUSION We demonstrated that the AVM induced acute toxicity, oxidative stress, osmoregulation disturbance, neurotoxicity and transcriptome imbalance in crayfish. These findings unraveled the detrimental effects of AVMs exposure on crayfish. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongyuan Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianjun Guan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lei Pu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liyang Shen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Kataoka T. Biological properties of the BCL-2 family protein BCL-RAMBO, which regulates apoptosis, mitochondrial fragmentation, and mitophagy. Front Cell Dev Biol 2022; 10:1065702. [PMID: 36589739 PMCID: PMC9800997 DOI: 10.3389/fcell.2022.1065702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria play an essential role in the regulation of cellular stress responses, including cell death. Damaged mitochondria are removed by fission and fusion cycles and mitophagy, which counteract cell death. BCL-2 family proteins possess one to four BCL-2 homology domains and regulate apoptosis signaling at mitochondria. BCL-RAMBO, also known as BCL2-like 13 (BCL2L13), was initially identified as one of the BCL-2 family proteins inducing apoptosis. Mitophagy receptors recruit the ATG8 family proteins MAP1LC3/GABARAP via the MAP1LC3-interacting region (LIR) motif to initiate mitophagy. In addition to apoptosis, BCL-RAMBO has recently been identified as a mitophagy receptor that possesses the LIR motif and regulates mitochondrial fragmentation and mitophagy. In the 20 years since its discovery, many important findings on BCL-RAMBO have been increasingly reported. The biological properties of BCL-RAMBO are reviewed herein.
Collapse
Affiliation(s)
- Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan,Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan,*Correspondence: Takao Kataoka,
| |
Collapse
|