1
|
Han WK, Zhang HH, Tang FX, Liu ZW. Characterization of lipases revealed tissue-specific triacylglycerol hydrolytic activity in Spodoptera frugiperda. INSECT SCIENCE 2024. [PMID: 39607846 DOI: 10.1111/1744-7917.13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/30/2024] [Accepted: 10/17/2024] [Indexed: 11/30/2024]
Abstract
Lipids perform a diverse and unique array of functions in insects. Lipases are key enzymes in lipid metabolism, and their metabolic products are crucial for development and reproduction of insects. Here, a total of 110 lipase genes were identified in the genome of Spodoptera frugiperda. Cluster analysis indicated that neutral lipases constitute the majority of lipases. Tissue expression profile analysis displayed that most lipase genes were highly expressed in the larval gut of S. frugiperda. Some lipases exhibited a diet-specific expression pattern, which implied their roles in host adaptation. Key domain analysis proved that none of the neutral lipases highly expressed in the gut has an integrated lid domain, while most lipases highly expressed in the fat body contained both the integrated lid domain and β9 loop, indicating the activity loss of neutral lipases in guts. The assay of triacylglycerol (TAG) hydrolytic activity confirmed that the gut had the lowest activity when compared to that of fat body and epidermis. Interestingly, the opposite TAG hydrolytic activity trends across mating were observed between adult males and females, implying that lipase played different roles in the reproduction of both sexes. In conclusion, neutral lipases lost TAG hydrolytic activity in S. frugiperda guts, but retained the activity in fat body. Neutral lipases would play vital roles in many physiological processes in insects, especially in insect reproduction, which provides palpable targets for novel insecticide development to control insect population growth.
Collapse
Affiliation(s)
- Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hui-Hui Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Xian Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Liu S, Zhan Z, Zhang X, Chen X, Xu J, Wang Q, Zhang M, Liu Y. Per- and polyfluoroalkyl substance (PFAS) mixtures induce gut microbiota dysbiosis and metabolic disruption in silkworm (Bombyx mori L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169782. [PMID: 38176555 DOI: 10.1016/j.scitotenv.2023.169782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Mixed legacy and emerging per- and polyfluoroalkyl substances (PFASs) are commonly found in soil and dust; however, the potential toxicity of PFAS mixtures (mPFASs) in insects is unknown. Using 16S rRNA gene sequencing and transcriptome sequencing (RNA-Seq), we evaluated the adverse effects of mPFASs on silkworms, a typical lepidopteran insect. After exposure to mPFASs, the silkworm midgut was enriched with high levels of PFASs, which induced histopathological changes. The composition of the midgut microbiota was significantly affected by mPFAS exposure, and functional predictions revealed significant disruption of some metabolic pathways. RNA-seq analysis revealed that mPFASs significantly changed the transcription profiles. Functional enrichment analysis of the differentially expressed genes also revealed that biological processes related to metabolic pathways and the digestive system were significantly affected, similar to the results of the gut microbiota analysis, suggesting that mPFAS exposure had an adverse effect on the metabolic function of silkworms and may further affect their normal growth. Finally, the significant correlation between abundance changes in the gut microbiota and metabolism/digestion-related genes further highlighted the role of the gut microbiota in mPFAS-related processes affecting the metabolic functions of silkworms. To our knowledge, this study is the first to evaluate the toxic effects of mPFASs in insects and provide basic data for further PFAS toxicity investigations in insects and comprehensive ecological risk assessments of mPFASs.
Collapse
Affiliation(s)
- Shuai Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Zhigao Zhan
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Xinghui Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Xi Chen
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China; College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Jiaojiao Xu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Qiyu Wang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Miao Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
3
|
Zhang HH, Yang BJ, Wu Y, Gao HL, Lin XM, Zou JZ, Liu ZW. Characterization of neutral lipases revealed the tissue-specific triacylglycerol hydrolytic activity in Nilaparvata lugens. INSECT SCIENCE 2023; 30:693-704. [PMID: 36093889 DOI: 10.1111/1744-7917.13118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/21/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The lipid metabolism plays an essential role in the development and reproduction of insects, and lipases are important enzymes in lipid metabolism. In Nilaparvata lugens, an important insect pest on rice, triacylglycerol hydrolytic activities were different among tissues, with high activity in integument, ovary, and fat body, but low activity in intestine. To figure out the tissue-specific triacylglycerol hydrolytic activity, we identified 43 lipases in N. lugens. Of these 43 lipases, 23 belonged to neutral lipases, so this group was selected to perform further experiments on triacylglycerol hydrolysis. The complete motifs of catalytic triads, β9 loop, and lid motif, are required for the triacylglycerol hydrolytic activity in neutral lipases, which were found in some neutral lipases with high gene expression levels in integument and ovary, but not in intestine. The recombinant proteins of 3 neutral lipases with or without 3 complete motifs were obtained, and the activity determination confirmed the importance of 3 motifs. Silencing XM_022331066.1, which is highly expressed in ovary and with 3 complete motifs, significantly decreased the egg production and hatchability of N. lugens, partially through decline of the lipid metabolism. In summary, at least one-third of important motifs were incomplete in all neutral lipases with high gene expression in intestine, which could partially explain why the lipase activity in intestine was much lower than that in other tissues. The low activity to hydrolyze triacylglycerol in N. lugens intestine might be associated with its food resource and nutrient components, and the ovary-specific neutral lipases were important for N. lugens reproduction.
Collapse
Affiliation(s)
- Hui-Hui Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bao-Jun Yang
- Rice Technology Research and Development Center, China National Rice Research Institute, Hangzhou, China
| | - Yong Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hao-Li Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xu-Min Lin
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian-Zheng Zou
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Miao Z, Xiong C, Cao X, Shan T, Jin Q, Jiang H. Genome-wide identification, classification, and expression profiling of serine esterases and other esterase-related proteins in the tobacco hornworm, Manduca sexta. INSECT SCIENCE 2023; 30:338-350. [PMID: 36043911 PMCID: PMC11445795 DOI: 10.1111/1744-7917.13108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Serine esterases (SEs) are hydrolases that catalyze the conversion of carboxylic esters into acids and alcohols. Lipases and carboxylesterases constitute two major groups of SEs. Although over a hundred of insect genomes are known, systematic identification and classification of SEs are rarely performed, likely due to large size and complex composition of the gene family in each species. Considering their key roles in lipid metabolism and other physiological processes, we have categorized 144 M. sexta SEs and SE homologs (SEHs), 114 of which contain a motif of GXSXG. Multiple sequence alignment and phylogenetic tree analysis have revealed 39 neutral lipases (NLs), 3 neutral lipase homologs (NLHs), 11 acidic lipases (ALs), 3 acidic lipase homologs (ALHs), a lipase-3, a triglyceride lipase, a monoglyceride lipase, a hormone-sensitive lipase, and a GDSL lipase. Eighty-three carboxylesterase genes encode 29 α-esterases (AEs), 12 AEHs (e.g., SEH4-1-3), 20 feruloyl esterases (FEs), 2 FEHs, 2 β-esterases (BEs), 2 integument esterases (IEs), 1 IEH, 4 juvenile hormone esterases, 2 acetylcholinesterases, gliotactin, 6 neuroligins, neurotactin, and an uncharacteristic esterase homolog. In addition to these GXSXG proteins, we have identified 26 phospholipases and 13 thioesterases. Expression profiling of these genes in specific tissues and stages has provided insights into their functions including digestion, detoxification, hormone processing, neurotransmission, reproduction, and developmental regulation. In summary, we have established a framework of information on SEs and related proteins in M. sexta to stimulate their research in the model species and comparative investigations in agricultural pests or disease vectors.
Collapse
Affiliation(s)
- Zelong Miao
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Chao Xiong
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Tisheng Shan
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Qiao Jin
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| |
Collapse
|
5
|
Wen F, Wang J, Shang D, Yan H, Yuan X, Wang Y, Xia Q, Wang G. Non-classical digestive lipase BmTGL selected by gene amplification reduces the effects of mulberry inhibitor during silkworm domestication. Int J Biol Macromol 2023; 229:589-599. [PMID: 36587639 DOI: 10.1016/j.ijbiomac.2022.12.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/09/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Efficient utilization of dietary lipids is crucial for Bombyx mori, also known as domesticated silkworms. However, the effects of domestication on the genes encoding lipases remain unknown. In this study, we investigated the expression difference of one triacylglycerol lipase (BmTGL) between B.mori and wild (ancestor) silkworm strains (Bombyx mandarina). An immunofluorescence localization analysis showed that BmTGL was present in all parts of the gut and was released into the intestinal lumen. BmTGL expression was significantly enhanced in different domesticated silkworm strains compared to that in the B. mandarina strains. The BmTGL copy numbers in the genomes of the domesticated silkworm strains were 2-to-3 folds that of the B. mandarina strains and accounted for the enhanced expression of BmTGL in the domesticated silkworm strains. The Ser144Asn substitution in the Ser-Asp-His catalytic triads of BmTGL resulted in relatively lower lipase activity and reduced sensitivity to the lipase inhibitor morachalcone A. Moreover, BmTGL overexpression significantly increased the weights of the B. mori silkworms compared to those of the non-transgenic controls. Thus, the selection of BmTGL by gene amplification may be a trade-off between maintaining high enzymatic activity and reducing the effects of mulberry inhibitors during silkworm domestication.
Collapse
Affiliation(s)
- Feng Wen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Jing Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Deli Shang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Hao Yan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Xingli Yuan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|