1
|
Li M, Jia W. Formation and hazard of ethyl carbamate and construction of genetically engineered Saccharomyces cerevisiae strains in Huangjiu (Chinese grain wine). Compr Rev Food Sci Food Saf 2024; 23:e13321. [PMID: 38517033 DOI: 10.1111/1541-4337.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Huangjiu, a well-known conventional fermented Chinese grain wine, is widely consumed in Asia for its distinct flavor. Trace amounts of ethyl carbamate (EC) may be generated during the fermentation or storage process. The International Agency for Research on Cancer elevated EC to a Class 2A carcinogen, so it is necessary to regulate EC content in Huangjiu. The risk of intake of dietary EC is mainly assessed through the margin of exposure (MOE) recommended by the European Food Safety Authority, with a smaller MOE indicating a higher risk. Interventions are necessary to reduce EC formation. As urea, one of the main precursors of EC formation in Huangjiu, is primarily produced by Saccharomyces cerevisiae through the catabolism of arginine, the construction of dominant engineered fermentation strains is a favorable trend for the future production and application of Huangjiu. This review summarized the formation and carcinogenic mechanism of EC from the perspectives of precursor substances, metabolic pathways after ingestion, and risk assessment. The methods of constructing dominant S. cerevisiae strains in Huangjiu by genetic engineering technology were reviewed, which provided an important theoretical basis for reducing EC content and strengthening practical control of Huangjiu safety, and the future research direction was prospected.
Collapse
Affiliation(s)
- Mi Li
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Wei Jia
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| |
Collapse
|
2
|
Yuan B, Wang WB, Wang XQ, Liu CG, Hasunuma T, Kondo A, Zhao XQ. The chromatin remodeler Ino80 regulates yeast stress tolerance and cell metabolism through modulating nitrogen catabolite repression. Int J Biol Macromol 2024; 258:129041. [PMID: 38154715 DOI: 10.1016/j.ijbiomac.2023.129041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Chromatin remodelers are important in maintaining the dynamic chromatin state in eukaryotic cells, which is essential for epigenetic regulation. Among the remodelers, the multi-subunits complex INO80 plays crucial roles in transcriptional regulation. However, current knowledge of chromatin regulation of the core subunit Ino80 on stress adaptation remains mysterious. Here we revealed that overexpressing the chromatin remodeler Ino80 elevated tolerance to multiple stresses in budding yeast Saccharomyces cerevisiae. Analyses of differential chromatin accessibility and global transcription levels revealed an enrichment of genes involved in NCR (nitrogen catabolite repression) under acetic acid stress. We demonstrated that Ino80 overexpression reduced the histone H3 occupancy in the promoter region of the glutamate dehydrogenase gene GDH2 and the allantoinase gene DAL1. Consistently, the decreased occupancy of nucleosome was revealed in the Ino80-inactivation mutant. Further analyses showed that Ino80 was recruited to the specific DNA locus in the promoter region of GDH2. Consistently, Ino80 overexpression facilitated the utilization of non-preferred nitrogen source to enhance ethanol yield under prolonged acetic acid stress. These results demonstrate that Ino80 plays a crucial role in coordinating carbon and nitrogen metabolism during stress adaptation.
Collapse
Affiliation(s)
- Bing Yuan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Bin Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Qing Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan; Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan; RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan; Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan; RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Chen Y, Gao S, Zhou J, Zeng W. Chromatin regulator Eaf3p regulates nitrogen metabolism in Saccharomyces cerevisiae as a trans-acting factor. Appl Environ Microbiol 2023; 89:e0145723. [PMID: 38047643 PMCID: PMC10734424 DOI: 10.1128/aem.01457-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE In this study, the mechanism of chromatin regulator Eaf3p regulating nitrogen metabolism in S. cerevisiae was investigated. It provides theoretical support for epigenetic modifications of cells to alter the level of histone modifications, coordinate the expression of multiple genes, and make it more conducive to the co-metabolism of multiple nitrogen sources. Moreover, it provides new ideas for industrial brewing yeast strains to achieve nitrogen source metabolism balance, reduce the accumulation of harmful nitrogen metabolites, and improve fermentation efficiency. This study provides a reference for changing the performance of microbial strains and improving the quality of traditional fermentation products and provides a theoretical basis for studying epigenetic modification and nitrogen metabolism regulation. It has an important theoretical explanation and practical application value. In addition, this study also provides useful clues for the study.
Collapse
Affiliation(s)
- Yu Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Cingiz MÖ. k- Strong Inference Algorithm: A Hybrid Information Theory Based Gene Network Inference Algorithm. Mol Biotechnol 2023:10.1007/s12033-023-00929-2. [PMID: 37950851 DOI: 10.1007/s12033-023-00929-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/05/2023] [Indexed: 11/13/2023]
Abstract
Gene networks allow researchers to understand the underlying mechanisms between diseases and genes while reducing the need for wet lab experiments. Numerous gene network inference (GNI) algorithms have been presented in the literature to infer accurate gene networks. We proposed a hybrid GNI algorithm, k-Strong Inference Algorithm (ksia), to infer more reliable and robust gene networks from omics datasets. To increase reliability, ksia integrates Pearson correlation coefficient (PCC) and Spearman rank correlation coefficient (SCC) scores to determine mutual information scores between molecules to increase diversity of relation predictions. To infer a more robust gene network, ksia applies three different elimination steps to remove redundant and spurious relations between genes. The performance of ksia was evaluated on microbe microarrays database in the overlap analysis with other GNI algorithms, namely ARACNE, C3NET, CLR, and MRNET. Ksia inferred less number of relations due to its strict elimination steps. However, ksia generally performed better on Escherichia coli (E.coli) and Saccharomyces cerevisiae (yeast) gene expression datasets due to F- measure and precision values. The integration of association estimator scores and three elimination stages slightly increases the performance of ksia based gene networks. Users can access ksia R package and user manual of package via https://github.com/ozgurcingiz/ksia .
Collapse
Affiliation(s)
- Mustafa Özgür Cingiz
- Computer Engineering Department, Faculty of Engineering and Natural Sciences, Bursa Technical University, Mimar Sinan Campus, Yildirim, 16310, Bursa, Turkey.
| |
Collapse
|
5
|
Chen Y, Zeng W, Yu S, Gao S, Zhou J. Chromatin regulator Ahc1p co-regulates nitrogen metabolism via interactions with multiple transcription factors in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2023; 662:31-38. [PMID: 37099808 DOI: 10.1016/j.bbrc.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
Chromatin regulation is an important gene expression/regulation system, but little is known about how it affects nitrogen metabolism in Saccharomyces cerevisiae. A previous study demonstrated the regulatory role of the chromatin regulator Ahc1p on multiple key genes of nitrogen metabolism in S. cerevisiae, but the regulatory mechanism remains unknown. In this study, multiple key nitrogen metabolism genes directly regulated by Ahc1p were identified, and the transcription factors interacting with Ahc1p were analyzed. It was ultimately found that Ahc1p may regulate some key nitrogen metabolism genes in two ways. First, Ahc1p acts as a co-factor and is recruited with transcription factors such as Rtg3p or Gcr1p to facilitate transcription complex binding to target gene core promoters and promote transcription initiation. Second, Ahc1p binds at enhancers to promote the transcription of target genes in concert with transcription factors. This study furthers the understanding of the regulatory network of nitrogen metabolism in S. cerevisiae from an epigenetic perspective.
Collapse
Affiliation(s)
- Yu Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Shiqin Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
6
|
Wei W, Gao S, Yi Q, Liu A, Yu S, Zhou J. Reengineering of 7-dehydrocholesterol biosynthesis in Saccharomyces cerevisiae using combined pathway and organelle strategies. Front Microbiol 2022; 13:978074. [PMID: 36016783 PMCID: PMC9398459 DOI: 10.3389/fmicb.2022.978074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
7-Dehydrocholesterol (7-DHC) is a widely used sterol and a precursor of several costly steroidal drugs. In this study, 7-DHC biosynthesis pathway was constructed and modified in Saccharomyces cerevisiae. Firstly, the biosynthesis pathway was constructed by knocking out the competitive pathway genes ERG5 and ERG6 and integrating two DHCR24 copies from Gallus gallus at both sites. Then, 7-DHC titer was improved by knocking out MOT3, which encoded a transcriptional repressor for the 7-DHC biosynthesis pathway. Next, by knocking out NEM1 and PAH1, 7-DHC accumulation was improved, and genes upregulation was verified by quantitative PCR (qPCR). Additionally, tHMG1, IDI1, ERG2, ERG3, DHCR24, POS5, and CTT1 integration into multi-copy sites was used to convert precursors to 7-DHC, and increase metabolic flux. Finally, qPCR confirmed the significant up-regulation of key genes transcriptional levels. In a 96 h shaker flask fermentation, the 7-DHC titer was 649.5 mg/L by de novo synthesis. In a 5 L bioreactor, the 7-DHC titer was 2.0 g/L, which was the highest 7-DHC titer reported to date. Our study is of great significance for the industrial production of 7-DHC and steroid development for medical settings.
Collapse
Affiliation(s)
- Wenqian Wei
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qiong Yi
- Changsha Hospital for Maternal & Child Health Care, Changsha, China
| | - Anjian Liu
- Hunan Kerey Pharmaceutical Co., Ltd., Shaoyang, China
| | - Shiqin Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- *Correspondence: Jingwen Zhou,
| |
Collapse
|