1
|
Lu JH, Zhang K, Xu SQ, Ding Y. Molecular Phylogenetics and Mitochondrial Genomic Evolution in the Endemic Genus Pielomastax (Orthoptera: Eumastacoidea) in China. Genes (Basel) 2024; 15:1260. [PMID: 39457383 PMCID: PMC11507007 DOI: 10.3390/genes15101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The genus Pielomastax Chang (Orthoptera: Eumastacoidea, 1937) is endemic to China, which is mainly distributed in low- and medium-altitude areas in central and eastern China. However, there are relatively few molecular data studies on the genus Pielomastax. METHODS In this study, three species of the genus Pielomastax were collected from Hubei and Henan, China, namely Pielomastax sp., Pielomastax shennongjiaensis Wang (1995) and Pielomastax tenuicerca Hsia and Liu (1989). Both Pielomastax sp. and Pielomastax shennongjiaensis were collected from the Shennongjia area of Hubei, but they exhibit some differences in morphological characteristics. RESULTS We obtained the mitochondrial genome structures of the three species, which were similar to those of the published mitochondrial genome structures of species within Eumastacoidea with 37 typical mitochondrial genes, including 13 PCGs, 22 tRNAs, and 2 ribosomal RNAs. The results of the maximum likelihood (ML) tree and the Bayesian inference (BI) tree showed that the families Eumastacidae, Chorotypidae and Episactinae in Eumastacoidea are a monophyletic group, and Thericleinae and Episactinae are sister clades. The time-calibrated phylogeny results indicated that the divergence time between Thericleinae and Episactinae was 95.58 Ma (56.71-128.02 Ma). CONCLUSIONS These phylogenetic tree results indicate that Pielomastax sp. and Pielomastax shennongjiaensis are the same species. And the time-calibrated phylogeny tree and the species distribution map of the genus Pielomastax indicate that the species of the genus Pielomastax spread from eastern to central China and diversified. These studies fill the gap in molecular data for the genus Pielomastax and the taxonomic status of Episactidae.
Collapse
Affiliation(s)
| | | | | | - Ying Ding
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China (K.Z.); (S.-Q.X.)
| |
Collapse
|
2
|
Kuo YY, Chang JC, Li YH, Huang YF, Wu TY, Nai YS. The Complete Mitochondrial Genome and Phylogenetic Analysis of Rhagastis binoculata (Matsumura, 1909) (Lepidoptera: Sphingidae). Genes (Basel) 2024; 15:1171. [PMID: 39336762 PMCID: PMC11430935 DOI: 10.3390/genes15091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The mitochondrial genome (mitogenome) Rhagastis binoculata (Matsumura, 1909), an endemic moth species in Taiwan, was sequenced and analyzed. The complete circular mitogenome of R. binoculata is 15,303 bp and contains 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and an AT-rich control region. The mitogenome has an overall nucleotide composition of 41.2% A, 11.9% C, 7.5% G, and 39.4% T, with an AT content of 80.6%. Of the protein-coding genes (PCGs), 12 start with ATG, ATT, and ATC, and COX1 starts with a "CGA" codon. All of the stop codons are "TAA, TAG, or T". Our phylogenetic analysis of 21 species of Sphingidae insects suggests that R. binoculata is clustered with Rhagastis mongoliana, which belongs to the subfamily Macroglossinae.
Collapse
Affiliation(s)
- Yu-Yun Kuo
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Ju-Chun Chang
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Yi-Hsuan Li
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City 402202, Taiwan
| | - Yu-Feng Huang
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Zhongli District, Taoyuan City 32023, Taiwan
| | - Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung City 40227, Taiwan
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City 402202, Taiwan
| |
Collapse
|
3
|
Wang L, Liu J, Liu H, Wang Y, Rong H. The complete mitochondrial genome analysis of Locastra muscosalis (Walker, 1866) (Lepidoptera: Pyralidae) and phylogenetic implications. Mitochondrial DNA B Resour 2024; 9:995-999. [PMID: 39113746 PMCID: PMC11305046 DOI: 10.1080/23802359.2024.2387259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
The complete mitochondrial genome of Locastra muscosalis (Walker, 1866) was sequenced and characterized in this study, which was the first reported complete mitogenome of the genus Locastra. The mitogenome of L. muscosalis has a total length of 15,177 bp, encompassing 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and an A-T rich region. Phylogenetic analysis revealed that L. muscosalis is closely associated with Orthaga euadrusalis. These data will serve as a valuable foundation for future investigations into the Epipaschiinae and Pyralidae evolutionary history.
Collapse
Affiliation(s)
- Laiyou Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Jiali Liu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Haosen Liu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yu Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Hua Rong
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
4
|
Chen Q, Deng M, Dai X, Wang W, Wang X, Chen LS, Huang GH. Phylogenomic data exploration with increased sampling provides new insights into the higher-level relationships of butterflies and moths (Lepidoptera). Mol Phylogenet Evol 2024; 197:108113. [PMID: 38796071 DOI: 10.1016/j.ympev.2024.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
A robust and stable phylogenetic framework is a fundamental goal of evolutionary biology. As the third largest insect order in the world following Coleoptera and Diptera, Lepidoptera (butterflies and moths) play a central role in almost every terrestrial ecosystem as indicators of environmental change and serve as important models for biologists exploring questions related to ecology and evolutionary biology. However, for such a charismatic insect group, the higher-level phylogenetic relationships among its superfamilies are still poorly resolved. Compared to earlier phylogenomic studies, we increased taxon sampling among Lepidoptera (37 superfamilies and 68 families containing 263 taxa) and acquired a series of large amino-acid datasets from 69,680 to 400,330 for phylogenomic reconstructions. Using these datasets, we explored the effect of different taxon sampling with significant increases in the number of included genes on tree topology by considering a series of systematic errors using maximum-likelihood (ML) and Bayesian inference (BI) methods. Moreover, we also tested the effectiveness in topology robustness among the three ML-based models. The results showed that taxon sampling is an important determinant in tree robustness of accurate lepidopteran phylogenetic estimation. Long-branch attraction (LBA) caused by site-wise heterogeneity is a significant source of bias giving rise to unstable positions of ditrysian groups in phylogenomic reconstruction. Phylogenetic inference showed the most comprehensive framework to reveal the relationships among lepidopteran superfamilies, and presented some newly relationships with strong supports (Papilionoidea was sister to Gelechioidea and Immoidea was sister to Galacticoidea, respectively), but limited by taxon sampling, the relationships within the species-rich and relatively rapid radiation Ditrysia and especially Apoditrysia remain poorly resolved, which need to increase taxon sampling for further phylogenomic reconstruction. The present study demonstrates that taxon sampling is an important determinant for an accurate lepidopteran tree of life and provides some essential insights for future lepidopteran phylogenomic studies.
Collapse
Affiliation(s)
- Qi Chen
- Yuelushan Laboratory, College of Plant Protection, Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, Hunan, China; Tropical Biodiversity and Bioresource Utilization Laboratory, College of Science, Qiongtai Normal University, Haikou 571127, Hainan, China
| | - Min Deng
- Yuelushan Laboratory, College of Plant Protection, Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, Hunan, China; Qiannan Polytechnic for Nationality, Duyun 558022, Guizhou, China
| | - Xuan Dai
- Yuelushan Laboratory, College of Plant Protection, Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Wei Wang
- Research Center for Wild Animal and Plant Resource Protection and Utilization, Qiongtai Normal University, Haikou 571127, Hainan, China
| | - Xing Wang
- Yuelushan Laboratory, College of Plant Protection, Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, Hunan, China; Tropical Biodiversity and Bioresource Utilization Laboratory, College of Science, Qiongtai Normal University, Haikou 571127, Hainan, China.
| | - Liu-Sheng Chen
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, Guangdong, China.
| | - Guo-Hua Huang
- Yuelushan Laboratory, College of Plant Protection, Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, Hunan, China.
| |
Collapse
|
5
|
Shah RA, Riyaz M, Ignacimuthu S, Sivasankaran K. Characterization and Molecular Phylogenetic Analysis of Subfamily Erebinae (Lepidoptera: Noctuoidea: Erebidae) Using Five Complete Mitochondrial Genomes. Biochem Genet 2024; 62:2224-2252. [PMID: 37891448 DOI: 10.1007/s10528-023-10528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/07/2023] [Indexed: 10/29/2023]
Abstract
In this study, the complete mitogenomes of Sympis rufibasis, Lacera noctilio, Oxyodes scrobiculata, Mocis undata, and Artena dotata were newly sequenced to bring up-to-date the database using the next-generation sequencing methods. The gene order of all sequenced mitogenomes was identical consisting of 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and a non-coding A+T-rich region, which were common to other Lepidopteran insects. All protein-coding genes (PCGs) initiated with a canonical ATN codon and ended with TAN or an incomplete stop codon, single T. The A+T-rich region of S. rufibasis, L. noctilio, O. scrobiculata, M. undata, and A. dotata are 406 bp, 462 bp, 372 bp, 410 bp, and 406 bp long, respectively, containing number of characteristics that are distinctive to Noctuoidea moths. We analyzed concatenated amino acid sequences of protein-coding genes not including rRNAs, using Maximum Likelihood and Bayesian Inference methods. The phylogenetic analyses indicated that the tribe relationships within Erebinae were reconstructed as (Sypnini+((Erebini 1+Poaphilini 1)+((Euclidiini+Catocalini+(Hypopyrini+Erebini 2))+((Hulodini+(Poaphilini 2+Ophiusini))))). Phylogenetic analyses supported and confirmed the monophyly of the subfamilies' relationships as follows: (Hypeninae+Lymantriinae)+((Scoliopterginae+((Calpinae+Erebinae)+((Herminiinae+Aganainae)+Arctiinae)))) within Erebidae.
Collapse
Affiliation(s)
- Rauf Ahmad Shah
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola Collège, Chennai, Tamil Nadu, 600034, India
| | - Muzafar Riyaz
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola Collège, Chennai, Tamil Nadu, 600034, India
| | - Savarimuthu Ignacimuthu
- Xavier Research Foundation, St. Xavier's College, Palayamkottai, Tamil Nadu, 627002, India
- Creighton University, 2500 California Plaza, Omaha, USA
| | - Kuppusamy Sivasankaran
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola Collège, Chennai, Tamil Nadu, 600034, India.
| |
Collapse
|
6
|
Yi J, Liu J, Mao Y, Cheng Y, Lin M, Xu H, An Y, Li J, Wu H. The Complete Mitochondrial Genome of Chilo infuscatellus (Lepidoptera: Pyralidae), and Related Phylogenetic Analysis. Biochem Genet 2024:10.1007/s10528-023-10639-8. [PMID: 38306003 DOI: 10.1007/s10528-023-10639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024]
Abstract
The Chilo infuscatellus (Lepidoptera: Pyralidae) is a significant pest of sugarcane in China. The genome-level characteristics of this pest are important genetic resources for identification, phylogenetic analysis, and even management. In the present study, the complete mitogenome of C. infuscatellus was sequenced and characterized. The assembled mitochondrial genome is 15,252 bp in length and includes 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and an A + T-rich region. Except for the CGA codon for the cox1 gene, the PCGs are initiated with ATN codons (ATG, ATT, and ATA). These PCGs are terminated with TAA or an incomplete termination codon of a single T. Except for the loss of the "DHU" arm for trnS1, the tRNA genes were folded into the typical cloverleaf structure. The A + T-rich region has a high AT content of 96.19% and contains the motifs "ATAGA" and "ATTTA", as well as a 19 bp poly-T stretch and microsatellite regions. The C. infuscatellus mitogenome exhibits a conserved gene order among lepidopteran insects, with a rearrangement of the trnM gene compared to the ancestral insect gene order. Phylogenetic analysis based on the 13 PCGs using Bayesian inference (BI) and maximum likelihood (ML) methods confirmed the monophyly of Pyralidae and Crambidae within Pyraloidea. The relationships between subfamilies in Pyralidae can be described as (Galleriinae + (Phycitinae + (Pyralinae + Epipaschiinae))). The "PS clade" and "non-PS clade" were formed within the family Crambidae. These findings provide valuable genetic resources for the identification, phylogenetic analysis, and management of sugarcane borers, contributing significantly to our understanding of the phylogeny of Pyraloidea insects and their evolution.
Collapse
Affiliation(s)
- Jiequn Yi
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Jianbai Liu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yongkai Mao
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yinjie Cheng
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Minjiang Lin
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Hanliang Xu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yuxing An
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Jihu Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China.
| | - Han Wu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China.
| |
Collapse
|
7
|
Liang X, Wang P, Zhang L, Li Z, Xiao Y. Determining the complete mitochondrial genome of Tethea albicostata (Lepidoptera: Drepanidae) and phylogenetic analysis. Mitochondrial DNA B Resour 2023; 8:963-966. [PMID: 37701525 PMCID: PMC10494727 DOI: 10.1080/23802359.2023.2254462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Tethea albicostata is a widely distributed insect species in northern and central China. To date, few studies have been conducted on this species, with the exception of morphological taxonomy studies. Here, we report the complete mitochondrial genome of T. albicostata collected in China. The circular-mapping mitogenome is 15,308 bp in length, with an overall A + T content of 80.52%, encoding 2 ribosomal RNA genes, 22 transfer RNA genes, and 13 protein-coding genes. The gene arrangement and components of T. albicostata are identical to those of most other Lepidopteran insects. Phylogenetic analysis based on mitogenomes showed that T. albicostata is grouped with Drepana pallida, which belongs to the same family as Drepanidae. The family Drepanidae formed a separate branch from other families in the phylogenetic tree. This study determined the second mitochondrial genome of the Drepanidae species.
Collapse
Affiliation(s)
- Xinyue Liang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ping Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- School of Life Sciences, Henan University, Kaifeng, China
- Shenzhen Research Institute of Henan University, Shenzhen, China
| | - Lei Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zaiyuan Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
8
|
Yang HJ, Yang ZH, Ren TG, Dong WG. Description and phylogenetic analysis of the complete mitochondrial genome in Eulaelaps silvestris provides new insights into the molecular classification of the family Haemogamasidae. Parasitology 2023; 150:821-830. [PMID: 37395062 PMCID: PMC10478059 DOI: 10.1017/s0031182023000616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/21/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023]
Abstract
In this study, the mitochondrial genome of Eulaelaps silvestris, which parasitizes Apodemus chevrieri, was sequenced and assembled to fill the gap in understanding the molecular evolution of the genus Eulaelaps. The E. silvestris mitochondrial genome is a double-stranded DNA molecule with a length of 14 882 bp, with a distinct AT preference for base composition and a notably higher AT content than GC content. The arrangement between genes is relatively compact, with a total of 10 gene intergenic regions and 12 gene overlap regions. All protein-coding genes had a typical ATN initiation codon, and only 2 protein-coding genes had an incomplete termination codon T. Out of the 13 protein-coding genes, the 5 most frequently used codons ended in A/U, with only 1 codon ending in G/C had an relative synonymous codon usage value >1. Except for trnS1 and trnS2, which lacked the D arm, all other tRNAs were able to form a typical cloverleaf structure; and there were a total of 38 mismatches in the folding process of tRNA genes. Unlike the gene arrangement order of the arthropod hypothetical ancestor, the E. silvestris mitochondrial genome underwent fewer rearrangements, mainly near tRNA genes and control regions. Both the maximum likelihood tree and the Bayesian tree showed that the family Haemogamasidae is most closely related to the family Dermanyssidae. The results not only provide a theoretical basis for studying the phylogenetic relationships of the genus Eulaelaps, but also provide molecular evidence that the family Haemogamasidae does not belong to the subfamily Laelapidae.
Collapse
Affiliation(s)
- Hui-Juan Yang
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan 671000, China
| | - Zhi-Hua Yang
- School of Foreign Languages, Dali University, Dali 671000, China
| | | | - Wen-Ge Dong
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan 671000, China
| |
Collapse
|
9
|
Ji YT, Zhou XJ, Yang Q, Lu YB, Wang J, Zou JX. Adaptive evolution characteristics of mitochondrial genomes in genus Aparapotamon (Brachyura, Potamidae) of freshwater crabs. BMC Genomics 2023; 24:193. [PMID: 37041498 PMCID: PMC10091551 DOI: 10.1186/s12864-023-09290-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/01/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Aparapotamon, a freshwater crab genus endemic to China, includes 13 species. The distribution of Aparapotamon spans the first and second tiers of China's terrain ladder, showing great altitudinal differences. To study the molecular mechanisms of adaptive evolution in Aparapotamon, we performed evolutionary analyses, including morphological, geographical, and phylogenetic analyses and divergence time estimation. We sequenced the mitogenomes of Aparapotamon binchuanense and Aparapotamon huizeense for the first time and resequenced three other mitogenomes of Aparapotamon grahami and Aparapotamon gracilipedum. These sequences were combined with NCBI sequences to perform comparative mitogenome analysis of all 13 Aparapotamon species, revealing mitogenome arrangement and the characteristics of protein-coding and tRNA genes. RESULTS A new species classification scheme of the genus Aparapotamon has been detected and verified by different aspects, including geographical, morphological, phylogenetics and comparative mitogenome analyses. Imprints from adaptive evolution were discovered in the mitochondrial genomes of group A, including the same codon loss at position 416 of the ND6 gene and the unique arrangement pattern of the tRNA-Ile gene. Multiple tRNA genes conserved or involved in adaptive evolution were detected. Two genes associated with altitudinal adaptation, ATP8 and ND6, which experienced positive selection, were identified for the first time in freshwater crabs. CONCLUSIONS Geological movements of the Qinghai-Tibet Plateau and Hengduan Mountains likely strongly impacted the speciation and differentiation of the four Aparapotamon groups. After some group A species dispersed from the Hengduan Mountain Range, new evolutionary characteristics emerged in their mitochondrial genomes, facilitating adaptation to the low-altitude environment of China's second terrain tier. Ultimately, group A species spread to high latitudes along the upper reaches of the Yangtze River, showing faster evolutionary rates, higher species diversity and the widest distribution.
Collapse
Affiliation(s)
- Yu-Tong Ji
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China
| | - Xiao-Juan Zhou
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China
| | - Qian Yang
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China
| | - Yuan-Biao Lu
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China
| | - Jun Wang
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China
| | - Jie-Xin Zou
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China.
- Department of Parasitology, School of Basic Medical Science, Nanchang University, 461 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, China.
| |
Collapse
|
10
|
Gao Y, Zhang J, Wang Q, Liu Q, Tang B. The Complete Mitochondrial Genome of Box Tree Moth Cydalima perspectalis and Insights into Phylogenetics in Pyraloidea. Animals (Basel) 2023; 13:ani13061045. [PMID: 36978586 PMCID: PMC10044125 DOI: 10.3390/ani13061045] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/15/2023] Open
Abstract
To resolve and reconstruct phylogenetic relationships within Pyraloidea based on molecular data, the mitochondrial genome (mitogenome) was widely applied to understand phylogenetic relations at different taxonomic levels. In this research, a complete mitogenome of Cydalima perspectalis was recorded, and the phylogenetic position of C. perspectalis was inferred based on the sequence in combination with other available sequence data. According to the research, the circular mitochondrial genome is 15,180 bp in length. It contains 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), 13 typical protein-coding genes (PCGs), and a non-coding control region. The arrangement of a gene of the C. perspectalis mitogenome is not the same as the putative ancestral arthropod mitogenome. All of the PCGs are initiated by ATN codons, except for the cytochrome c oxidase subunit 1 (cox1) gene, which is undertaken by CGA. Five genes have incomplete stop codons that contain only ‘T’. All tRNA genes display a typical clover–leaf structure of mitochondrial tRNA, except for trnS1 (AGN). The control region contained an ‘ATAGG(A)’-like motif followed by a poly-T stretch. Based on the mitochondrial data, phylogenetic analysis within Pyraloidea was carried out using Bayesian inference (BI) and maximum likelihood (ML) analyses. Phylogenetic analysis showed that C. perspectalis is more closely related to Pygospila tyres within Spilomelinae than those of Crambidae and Pyraloidea.
Collapse
Affiliation(s)
- Yichang Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Centre for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Jie Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Centre for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Qinghao Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Centre for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Qiuning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Centre for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
- Correspondence: (Q.L.); (B.T.); Tel./Fax: +86-515-88233991 (B.T.)
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Centre for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
- Correspondence: (Q.L.); (B.T.); Tel./Fax: +86-515-88233991 (B.T.)
| |
Collapse
|
11
|
Meng YF, Chen CF, Huang YX, Wang X, Zhang B. Characterization of the complete mitochondrial genome sequence of Smerinthus caecus (Lepidoptera: Sphingidae). Mitochondrial DNA B Resour 2023; 8:130-132. [PMID: 36685656 PMCID: PMC9848299 DOI: 10.1080/23802359.2022.2163597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In this study, we sequenced and analyzed the complete mitogenome of Smerinthus caecus Ménétriés, 1857. The mitogenome of S. caecus is a circular structure, and 15,363 bp long in size and encodes 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and a control region (CR). An extremely high AT bias of 79.2% was found in the nucleotide composition of mitogenome. Most of the PCGs used ATN as the start codon and TAA or TAG as the stop codon, which is similar to most other insect mitogenomes, except cox1, which starts with CGA. The phylogeny of Smerinthinae was reconstructed using a maximum-likelihood method, a total of 33 mitogenomes were sampled for phylogenetic analyses. The subfamily Langiinae was selected as outgroup. The results confirmed the position of S. caecus in the Smerinthinae, in which Smerinthus caecus was placed as the sister taxon to Smerinthus planus, then to Laothoe amurensis.
Collapse
Affiliation(s)
- Yin-Feng Meng
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, China
| | - Chao-Fan Chen
- Shanxi Forestry and Grassland Bureau, Taiyuan, China
| | - Yi-Xin Huang
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, China
| | - Xu Wang
- College of Life Sciences, Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, China
| | - Bo Zhang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, China,CONTACT Bo Zhang College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi, China
| |
Collapse
|
12
|
Liu J, Yu J, Yu X, Bi W, Yang H, Xue F, Zhang G, Zhang J, Yi D, Ma R, Zhou Y, Lan G, Gu J, Wu W, Li Z, Qi G. Complete Mitogenomes of Ticks Ixodes acutitarsus and Ixodes ovatus Parasitizing Giant Panda: Deep Insights into the Comparative Mitogenomic and Phylogenetic Relationship of Ixodidae Species. Genes (Basel) 2022; 13:2049. [PMID: 36360286 PMCID: PMC9691169 DOI: 10.3390/genes13112049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 04/11/2024] Open
Abstract
Ticks rank second in the world as vectors of disease. Tick infestation is one of the factors threatening the health and survival of giant pandas. Here, we describe the mitogenomes of Ixodes acutitarsus and Ixodes ovatus parasitizing giant pandas, and perform comparative and phylogenetic genomic analyses on the newly sequenced and other available mitogenomes of hard ticks. All six newly determined mitogenomes contain a typical gene component and share an ancient Arthropoda gene arrangement pattern. Our study suggests that I. ovatus is a species complex with high genetic divergence, indicating that different clades of I. ovatus represent distinct species. Comparative mitogenomic analyses show that the average A + T content of Ixodidae mitogenomes is 78.08%, their GC-skews are strongly negative, while AT-skews fluctuate around 0. A large number of microsatellites are detected in Ixodidae mitogenomes, and the main microsatellite motifs are mononucleotide A and trinucleotide AAT. We summarize five gene arrangement types, and identify the trnY-COX1-trnS1-COX2-trnK-ATP8-ATP6-COX3-trnG fragment is the most conserved region, whereas the region near the control region is the rearrangement hotspot in Ixodidae mitogenomes. The phylogenetic trees based on 15 genes provide a very convincing relationship (Ixodes + (Robertsicus + ((Bothriocroton + Haemaphysalis) + (Amblyomma + (Dermacentor + (Rhipicentor + (Hyalomma + Rhipicephalus))))))) with very strong supports. Remarkably, Archaeocroton sphenodonti is embedded in the Haemaphysalis clade with strong supports, resulting in paraphyly of the Haemaphysalis genus, so in-depth morphological and molecular studies are essential to determine the taxonomic status of A. sphenodonti and its closely related species. Our results provide new insights into the molecular phylogeny and evolution of hard ticks, as well as basic data for population genetics assessment and efficient surveillance and control for the giant panda-infesting ticks.
Collapse
Affiliation(s)
- Jiabin Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Jiaojiao Yu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Xiang Yu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Wenlei Bi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Hong Yang
- Management Center of Daxiangling Nature Reserve in Yingjing County, Ya’an 625200, China
| | - Fei Xue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Gexiang Zhang
- College of Computer Science and Cyber Security, Chengdu University of Technology, Chengdu 610059, China
| | - Jindong Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| | - Dejiao Yi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Rui Ma
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Yanshan Zhou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Guanwei Lan
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| | - Jiang Gu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Wei Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Zusheng Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Guilan Qi
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China
| |
Collapse
|
13
|
Unfolding the mitochondrial genome structure of green semilooper (Chrysodeixis acuta Walker): An emerging pest of onion (Allium cepa L.). PLoS One 2022; 17:e0273635. [PMID: 36040876 PMCID: PMC9426943 DOI: 10.1371/journal.pone.0273635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Onion is the most important crop challenged by a diverse group of insect pests in the agricultural ecosystem. The green semilooper (Chrysodeixis acuta Walker), a widespread tomato and soybean pest, has lately been described as an emergent onion crop pest in India. C. acuta whole mitochondrial genome was sequenced in this work. The circular genome of C. acuta measured 15,743 base pairs (bp) in length. Thirteen protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and one control region were found in the 37 sequence elements. With an average 395 bp gene length, the maximum and minimum gene length observed was 1749 bp and 63 bp of nad5 and trnR, respectively. Nine of the thirteen PCGs have (ATN) as a stop codon, while the other four have a single (T) as a stop codon. Except for trnS1, all of the tRNAs were capable of producing a conventional clover leaf structure. Conserved ATAGA motif sequences and poly-T stretch were identified at the start of the control region. Six overlapping areas and 18 intergenic spacer regions were found, with sizes ranged from 1 to 20 bp and 1 to 111 bp correspondingly. Phylogenetically, C. acuta belongs to the Plusiinae subfamily of the Noctuidae superfamily, and is closely linked to Trichoplusia ni species from the same subfamily. In the present study, the emerging onion pest C. acuta has its complete mitochondrial genome sequenced for the first time.
Collapse
|
14
|
Meng YF, Wang Y, Wang M, Huang YX, Wang X. The first complete mitochondrial genome of the hawkmoth Marumba saishiuana (Lepidoptera: Sphingidae) and insights into its phylogenetic position. Mitochondrial DNA B Resour 2022; 7:1525-1527. [PMID: 36034536 PMCID: PMC9415441 DOI: 10.1080/23802359.2022.2110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
In this study, we sequenced and analyzed the complete mitogenome of Marumba saishiuana Okamoto, 1924. The complete mitogenome sequence of M. saishiuana is circular, 15,662 bp in size and encodes 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and a control region (CR). Nucleotide composition is highly biased toward A + T nucleotides (81.2%). Most of 13 PCGs initiate with the standard start codon of ATN, except cox1, which starts with CGA. Phylogenetic analyses were performed using nucleotide sequences. A total of 32 Smerinthinae species were selected. The topology based on mitogenome showed that M. saishiuana, M. gaschkewitschii, and M. sperchius formed a clade, and this indicated that M. saishiuana was a member of genus Marumba. Polyptychus trilineatus was the most closely related to genus Marumba on the phylogenetic tree reconstructed by mitogenomes.
Collapse
Affiliation(s)
- Yin-Feng Meng
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, China
- Shangluo Technology & Research Institute of Chinese Medicinal Materials Integrated Pest Management, Shangluo, China
| | - Yang Wang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, China
- Shangluo Technology & Research Institute of Chinese Medicinal Materials Integrated Pest Management, Shangluo, China
| | - Mei Wang
- Wuwei Forestry and Grassland Bureau, Wuwei, China
| | - Yi-Xin Huang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, China
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
| | - Xu Wang
- College of Life Sciences, Anhui Provincial Key Lab. of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, China
| |
Collapse
|