1
|
Ullah H, Minno AD, Filippis AD, Sommella E, Buccato DG, Lellis LFD, El-Seedi HR, Khalifa SAM, Piccinocchi R, Galdiero M, Campiglia P, Daglia M. In Vitro Antimicrobial and Antibiofilm Properties and Bioaccessibility after Oral Digestion of Chemically Characterized Extracts Obtained from Cistus × incanus L., Scutellaria lateriflora L., and Their Combination. Foods 2023; 12:foods12091826. [PMID: 37174364 PMCID: PMC10178160 DOI: 10.3390/foods12091826] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Periodontal diseases are oral inflammatory diseases ranging from gingivitis to chronic periodontitis. Porphyromonas gingivalis is one of the major pathogens responsible for severe and chronic periodontitis. Plant extracts with antimicrobial activity could be considered possible alternatives to chlorhexidine, an antiseptic substance used in oral hygiene thatcan cause bacteria resistance. Here, two commercial extracts obtained from Cistus × incanus L. and Scutellaria lateriflora L. were chemically characterized usingUltra-High-Performance Liquid Chromatography (UHPLC) coupled with a Q-Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer. The extracts were studied for their bioaccessibility after simulated in vitro oral digestion, their antimicrobial activity against P. gingivalis, their protective effects against cellular invasion by P. gingivalis, and their antibiofilm activity. The extracts were found to contain very complex mixtures of polyphenols, which were quite stable after in vitro simulated oral digestion and demonstrated mild, dose-dependent inhibitory activity against P. gingivalis growth. This activity increased with the combination of the two extracts. Moreover, the combination of the extracts induced a reduction in P. gingivalis HaCaT invasiveness, and the reduction in biofilm came to around 80%. In conclusion, a combination of C. incanus and S. lateriflora showed promising effects useful in the treatment of gingivitis.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, NA, Italy
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, NA, Italy
- CEINGE-BiotecnologieAvanzate, Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania "L. Vanvitelli", Via De Crecchio, 7, 80138 Naples, NA, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, NA, Italy
| | | | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, SE-751 24 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Shaden A M Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Roberto Piccinocchi
- Level 1 Medical Director Anaesthesia and Resuscitation A. U. O. Luigi Vanvitelli, Via Santa Maria di Costantinopoli, 80138 Naples, NA, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania "L. Vanvitelli", Via De Crecchio, 7, 80138 Naples, NA, Italy
- UOC of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138 Naples, NA, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
- European Biomedical Research Institute of Salerno, Via De Renzi 50, 84125 Salerno, SA, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, NA, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Guzmán-Mejía F, Godínez-Victoria M, Molotla-Torres DE, Drago-Serrano ME. Lactoferrin as a Component of Pharmaceutical Preparations: An Experimental Focus. Pharmaceuticals (Basel) 2023; 16:214. [PMID: 37259362 PMCID: PMC9961256 DOI: 10.3390/ph16020214] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 10/29/2023] Open
Abstract
Lactoferrin is an 80 kDa monomeric glycoprotein that exhibits multitask activities. Lactoferrin properties are of interest in the pharmaceutical field for the design of products with therapeutic potential, including nanoparticles and liposomes, among many others. In antimicrobial preparations, lactoferrin has been included either as a main bioactive component or as an enhancer of the activity and potency of first-line antibiotics. In some proposals based on nanoparticles, lactoferrin has been included in delivery systems to transport and protect drugs from enzymatic degradation in the intestine, favoring the bioavailability for the treatment of inflammatory bowel disease and colon cancer. Moreover, nanoparticles loaded with lactoferrin have been formulated as delivery systems to transport drugs for neurodegenerative diseases, which cannot cross the blood-brain barrier to enter the central nervous system. This manuscript is focused on pharmaceutical products either containing lactoferrin as the bioactive component or formulated with lactoferrin as the carrier considering its interaction with receptors expressed in tissues as targets of drugs delivered via parenteral or mucosal administration. We hope that this manuscript provides insights about the therapeutic possibilities of pharmaceutical Lf preparations with a sustainable approach that contributes to decreasing the resistance of antimicrobials and enhancing the bioavailability of first-line drugs for intestinal chronic inflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabiola Guzmán-Mejía
- Unidad Xochimilco, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México CP 04960, Mexico
| | - Marycarmen Godínez-Victoria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México CP 11340, Mexico
| | - Daniel Efrain Molotla-Torres
- Unidad Xochimilco, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México CP 04960, Mexico
| | - Maria Elisa Drago-Serrano
- Unidad Xochimilco, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México CP 04960, Mexico
| |
Collapse
|
3
|
Sao P, Chand Y, Al-Keridis LA, Saeed M, Alshammari N, Singh S. Classifying Integrated Signature Molecules in Macrophages of Rheumatoid Arthritis, Osteoarthritis, and Periodontal Disease: An Omics-Based Study. Curr Issues Mol Biol 2022; 44:3496-3517. [PMID: 36005137 PMCID: PMC9406916 DOI: 10.3390/cimb44080241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
Rheumatoid arthritis (RA), osteoarthritis (OA), and periodontal disease (PD) are chronic inflammatory diseases that are globally prevalent, and pose a public health concern. The search for a potential mechanism linking PD to RA and OA continues, as it could play a significant role in disease prevention and treatment. Recent studies have linked RA, OA, and PD to Porphyromonas gingivalis (PG), a periodontal bacterium, through a similar dysregulation in an inflammatory mechanism. This study aimed to identify potential gene signatures that could assist in early diagnosis as well as gain insight into the molecular mechanisms of these diseases. The expression data sets with the series IDs GSE97779, GSE123492, and GSE24897 for macrophages of RA, OA synovium, and PG stimulated macrophages (PG-SM), respectively, were retrieved and screened for differentially expressed genes (DEGs). The 72 common DEGs among RA, OA, and PG-SM were further subjected to gene–gene correlation analysis. A GeneMANIA interaction network of the 47 highly correlated DEGs comprises 53 nodes and 271 edges. Network centrality analysis identified 15 hub genes, 6 of which are DEGs (API5, ATE1, CCNG1, EHD1, RIN2, and STK39). Additionally, two significantly up-regulated non-hub genes (IER3 and RGS16) showed interactions with hub genes. Functional enrichment analysis of the genes showed that “apoptotic regulation” and “inflammasomes” were among the major pathways. These eight genes can serve as important signatures/targets, and provide new insights into the molecular mechanism of PG-induced RA, OA, and PD.
Collapse
Affiliation(s)
- Prachi Sao
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
| | - Yamini Chand
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Correspondence: (L.A.A.-K.); (S.S.)
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Sachidanand Singh
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
- Department of Biotechnology, Vignan’s Foundation for Science, Technology, and Research (Deemed to be University), Vadlamudi, Guntur 522213, Andhra Pradesh, India
- Department of Biotechnology, Smt. S. S. Patel Nootan Science & Commerce College, Sankalchand Patel University, Visnagar 384315, Gujarat, India
- Correspondence: (L.A.A.-K.); (S.S.)
| |
Collapse
|