1
|
Djorwé S, Malki A, Nzoyikorera N, Nyandwi J, Zebsoubo SP, Bellamine K, Bousfiha A. Genetic diversity and genomic epidemiology of SARS-CoV-2 during the first 3 years of the pandemic in Morocco: comprehensive sequence analysis, including the unique lineage B.1.528 in Morocco. Access Microbiol 2024; 6:000853.v4. [PMID: 39376591 PMCID: PMC11457919 DOI: 10.1099/acmi.0.000853.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
During the 3 years following the emergence of the COVID-19 pandemic, the African continent, like other regions of the world, was substantially impacted by COVID-19. In Morocco, the COVID-19 pandemic has been marked by the emergence and spread of several SARS-CoV-2 variants, leading to a substantial increase in the incidence of infections and deaths. Nevertheless, the comprehensive understanding of the genetic diversity, evolution, and epidemiology of several viral lineages remained limited in Morocco. This study sought to deepen the understanding of the genomic epidemiology of SARS-CoV-2 through a retrospective analysis. The main objective of this study was to analyse the genetic diversity of SARS-CoV-2 and identify distinct lineages, as well as assess their evolution during the pandemic in Morocco, using genomic epidemiology approaches. Furthermore, several key mutations in the functional proteins across different viral lineages were highlighted along with an analysis of the genetic relationships amongst these strains to better understand their evolutionary pathways. A total of 2274 genomic sequences of SARS-CoV-2 isolated in Morocco during the period of 2020 to 2023, were extracted from the GISAID EpiCoV database and subjected to analysis. Lineages and clades were classified according to the nomenclature of GISAID, Nextstrain, and Pangolin. The study was conducted and reported in accordance with STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines. An exhaustive analysis of 2274 genomic sequences led to the identification of 157 PANGO lineages, including notable lineages such as B.1, B.1.1, B.1.528, and B.1.177, as well as variants such as B.1.1.7, B.1.621, B.1.525, B.1.351, B.1.617.1, B.1.617.2, and its notable sublineages AY.33, AY.72, AY.112, AY.121 that evolved over time before being supplanted by Omicron in December 2021. Among the 2274 sequences analysed, Omicron and its subvariants had a prevalence of 59.5%. The most predominant clades were 21K, 21L, and 22B, which are respectively related phylogenetically to BA.1, BA.2, and BA.5. In June 2022, Morocco rapidly observed a recrudescence of cases of infection, with the emergence and concurrent coexistence of subvariants from clade 22B such as BA.5.2.20, BA.5, BA.5.1, BA.5.2.1, and BF.5, supplanting the subvariants BA.1 (clade display 21K) and BA.2 (clade display 21L), which became marginal. However, XBB (clade 22F) and its progeny such XBB.1.5(23A), XBB.1.16(23B), CH.1.1(23C), XBB.1.9(23D), XBB.2.3(23E), EG.5.1(23F), and XBB.1.5.70(23G) have evolved sporadically. Furthermore, several notable mutations, such as H69del/V70del, G142D, K417N, T478K, E484K, E484A, L452R, F486P, N501Y, Q613H, D614G, and P681H/R, have been identified. Some of these SARS-CoV-2 mutations are known to be involved in increasing transmissibility, virulence, and antibody escape. This study has identified several distinct lineages and mutations involved in the genetic diversity of Moroccan isolates, as well as the analysis of their evolutionary trends. These findings provide a robust basis for better understanding the distinct mutations and their roles in the variation of transmissibility, pathogenicity, and antigenicity (immune evasion/reinfection). Furthermore, the noteworthy number of distinct lineages identified in Morocco highlights the importance of maintaining continuous surveillance of COVID-19. Moreover, expanding vaccination coverage would also help protect patients against more severe clinical disease.
Collapse
Affiliation(s)
- Soulandi Djorwé
- Laboratory of Physiopathology and Molecular Genetics, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca (Morocco), Avenue Cdt Driss El Harti, PB 7955 Sidi Othman, Casablanca, Morocco
- Bourgogne Laboratory of Medical and Scientific Analysis, 136, residence belhcen, Bd Bourgogne, Casablanca, Morocco
| | - Abderrahim Malki
- Laboratory of Physiopathology and Molecular Genetics, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca (Morocco), Avenue Cdt Driss El Harti, PB 7955 Sidi Othman, Casablanca, Morocco
| | - Néhémie Nzoyikorera
- National Reference Laboratory, National Institute of Public Health, Bujumbura, Burundi
- Higher Institute of Biosciences and Biotechnology, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
- Laboratory of Microbial Biotechnology and Infectiology Research, Mohammed VI Center for Research & Innovation, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Joseph Nyandwi
- Département de Médecine, Faculté de Médecine, Université du Burundi, Bujumbura, Burundi
- Ministère de la Santé Publique et de la Lutte contre le Sida, Institut National de Santé Publique de Bujumbura, Bujumbura, Burundi
| | - Samuel Privat Zebsoubo
- School of Advanced Studies in Biotechnology and Private Health (EHEB), 183 Bd de la Resistance, Casablanca 20250, Morocco
| | - Kawthar Bellamine
- Bourgogne Laboratory of Medical and Scientific Analysis, 136, residence belhcen, Bd Bourgogne, Casablanca, Morocco
| | - Amale Bousfiha
- Laboratory of Physiopathology and Molecular Genetics, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca (Morocco), Avenue Cdt Driss El Harti, PB 7955 Sidi Othman, Casablanca, Morocco
| |
Collapse
|
2
|
Dorji T, Dorji K, Wangchuk T, Pelki T, Gyeltshen S. Genetic diversity and evolutionary patterns of SARS-CoV-2 among the Bhutanese population during the pandemic. Osong Public Health Res Perspect 2023; 14:494-507. [PMID: 38204428 PMCID: PMC10788421 DOI: 10.24171/j.phrp.2023.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 11/08/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic, caused by a dynamic virus, has had a profound global impact. Despite declining global COVID-19 cases and mortality rates, the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remains a major concern. This study provides a comprehensive analysis of the genomic sequences of SARS-CoV-2 within the Bhutanese population during the pandemic. The primary aim was to elucidate the molecular epidemiology and evolutionary patterns of SARS-CoV-2 in Bhutan, with a particular focus on genetic variations and lineage dynamics. METHODS Whole-genome sequences of SARS-CoV-2 collected from Bhutan between May 2020 and February 2023 (n=135) were retrieved from the Global Initiative on Sharing All Influenza Database. RESULTS The SARS-CoV-2 variants in Bhutan were predominantly classified within the Nextstrain clade 20A (31.1%), followed by clade 21L (20%) and clade 22D (15.6%). We identified 26 Pangolin lineages with variations in their spatial and temporal distribution. Bayesian time-scaled phylogenetic analysis estimated the time to the most recent common ancestor as February 15, 2020, with a substitution rate of 0.97×10-3 substitutions per site per year. Notably, the spike glycoprotein displayed the highest mutation frequency among major viral proteins, with 116 distinct mutations, including D614G. The Bhutanese isolates also featured mutations such as E484K, K417N, and S477N in the spike protein, which have implications for altered viral properties. CONCLUSION This is the first study to describe the genetic diversity of SARS-CoV-2 circulating in Bhutan during the pandemic, and this data can inform public health policies and strategies for preventing future outbreaks in Bhutan.
Collapse
Affiliation(s)
- Tshering Dorji
- Royal Centre for Disease Control, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| | - Kunzang Dorji
- Royal Centre for Disease Control, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| | - Tandin Wangchuk
- Royal Centre for Disease Control, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| | - Tshering Pelki
- Royal Centre for Disease Control, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| | - Sonam Gyeltshen
- Royal Centre for Disease Control, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| |
Collapse
|
3
|
Habib MT, Rahman S, Afrad MH, Howlader AM, Khan MH, Khanam F, Alam AN, Chowdhury EK, Rahman Z, Rahman M, Shirin T, Qadri F. Natural selection shapes the evolution of SARS-CoV-2 Omicron in Bangladesh. Front Genet 2023; 14:1220906. [PMID: 37621704 PMCID: PMC10446972 DOI: 10.3389/fgene.2023.1220906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved to give rise to a highly transmissive and immune-escaping variant of concern, known as Omicron. Many aspects of the evolution of SARS-CoV-2 and the driving forces behind the ongoing Omicron outbreaks remain unclear. Substitution at the receptor-binding domain (RBD) in the spike protein is one of the primary strategies of SARS-CoV-2 Omicron to hinder recognition by the host angiotensin-converting enzyme 2 (ACE2) receptor and avoid antibody-dependent defense activation. Here, we scanned for adaptive evolution within the SARS-CoV-2 Omicron genomes reported from Bangladesh in the public database GISAID (www.gisaid.org; dated 2 April 2023). The ratio of the non-synonymous (Ka) to synonymous (Ks) nucleotide substitution rate, denoted as ω, is an indicator of the selection pressure acting on protein-coding genes. A higher proportion of non-synonymous to synonymous substitutions (Ka/Ks or ω > 1) indicates positive selection, while Ka/Ks or ω near zero indicates purifying selection. An equal amount of non-synonymous and synonymous substitutions (Ka/Ks or ω = 1) refers to neutrally evolving sites. We found evidence of adaptive evolution within the spike (S) gene of SARS-CoV-2 Omicron isolated from Bangladesh. In total, 22 codon sites of the S gene displayed a signature of positive selection. The data also highlighted that the receptor-binding motif within the RBD of the spike glycoprotein is a hotspot of adaptive evolution, where many of the codons had ω > 1. Some of these adaptive sites at the RBD of the spike protein are known to be associated with increased viral fitness. The M gene and ORF6 have also experienced positive selection. These results suggest that although purifying selection is the dominant evolutionary force, positive Darwinian selection also plays a vital role in shaping the evolution of SARS-CoV-2 Omicron in Bangladesh.
Collapse
Affiliation(s)
| | - Saikt Rahman
- Institute for Developing Science and Health Initiatives, Dhaka, Bangladesh
| | | | | | | | - Farhana Khanam
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ahmed Nawsher Alam
- Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Emran Kabir Chowdhury
- Department of Biochemistry and Molecular Biochemistry, University of Dhaka, Dhaka, Bangladesh
| | - Ziaur Rahman
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Mustafizur Rahman
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Firdausi Qadri
- Institute for Developing Science and Health Initiatives, Dhaka, Bangladesh
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| |
Collapse
|
4
|
Lomoio U, Puccio B, Tradigo G, Guzzi PH, Veltri P. SARS-CoV-2 protein structure and sequence mutations: Evolutionary analysis and effects on virus variants. PLoS One 2023; 18:e0283400. [PMID: 37471335 PMCID: PMC10358949 DOI: 10.1371/journal.pone.0283400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
The structure and sequence of proteins strongly influence their biological functions. New models and algorithms can help researchers in understanding how the evolution of sequences and structures is related to changes in functions. Recently, studies of SARS-CoV-2 Spike (S) protein structures have been performed to predict binding receptors and infection activity in COVID-19, hence the scientific interest in the effects of virus mutations due to sequence, structure and vaccination arises. However, there is the need for models and tools to study the links between the evolution of S protein sequence, structure and functions, and virus transmissibility and the effects of vaccination. As studies on S protein have been generated a large amount of relevant information, we propose in this work to use Protein Contact Networks (PCNs) to relate protein structures with biological properties by means of network topology properties. Topological properties are used to compare the structural changes with sequence changes. We find that both node centrality and community extraction analysis can be used to relate protein stability and functionality with sequence mutations. Starting from this we compare structural evolution to sequence changes and study mutations from a temporal perspective focusing on virus variants. Finally by applying our model to the Omicron variant we report a timeline correlation between Omicron and the vaccination campaign.
Collapse
Affiliation(s)
- Ugo Lomoio
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Barbara Puccio
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, Italy
| | | | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, Italy
| | | |
Collapse
|