1
|
da Silva Antunes JC, Sobral P, Branco V, Martins M. Uncovering layer by layer the risk of nanoplastics to the environment and human health. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:63-121. [PMID: 39670667 DOI: 10.1080/10937404.2024.2424156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Nanoplastics (NPs), defined as plastic particles with dimensions less than 100 nm, have emerged as a persistent environmental contaminant with potential risk to both environment and human health. Nanoplastics might translocate across biological barriers and accumulate in vital organs, leading to inflammatory responses, oxidative stress, and genotoxicity, already reported in several organisms. Disruptions to cellular functions, hormonal balance, and immune responses were also linked to NPs exposure in in vitro assays. Further, NPs have been found to adsorb other pollutants, such as persistent organic pollutants (POPs), and leach additives potentially amplifying their advere impacts, increasing the threat to organisms greater than NPs alone. However, NPs toxic effects remain largely unexplored, requiring further research to elucidate potential risks to human health, especially their accumulation, degradation, migration, interactions with the biological systems and long-term consequences of chronic exposure to these compounds. This review provides an overview of the current state-of-art regarding NPs interactions with environmental pollutants and with biological mechanisms and toxicity within cells.
Collapse
Affiliation(s)
- Joana Cepeda da Silva Antunes
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Paula Sobral
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Martins
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| |
Collapse
|
2
|
Rude CI, Wilson LB, La Du J, Lalli PM, Colby SM, Schultz KJ, Smith JN, Waters KM, Tanguay RL. Aryl hydrocarbon receptor-dependent toxicity by retene requires metabolic competence. Toxicol Sci 2024; 202:50-68. [PMID: 39107868 PMCID: PMC11514837 DOI: 10.1093/toxsci/kfae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds frequently detected in the environment with widely varying toxicities. Many PAHs activate the aryl hydrocarbon receptor (AHR), inducing the expression of a battery of genes, including xenobiotic metabolizing enzymes like cytochrome P450s (CYPs); however, not all PAHs act via this mechanism. We screened several parent and substituted PAHs in in vitro AHR activation assays to classify their unique activity. Retene (1-methyl-7-isopropylphenanthrene) displays Ahr2-dependent teratogenicity in zebrafish, but did not activate human AHR or zebrafish Ahr2, suggesting a retene metabolite activates Ahr2 in zebrafish to induce developmental toxicity. To investigate the role of metabolism in retene toxicity, studies were performed to determine the functional role of cyp1a, cyp1b1, and the microbiome in retene toxicity, identify the zebrafish window of susceptibility, and measure retene uptake, loss, and metabolite formation in vivo. Cyp1a-null fish were generated using CRISPR-Cas9. Cyp1a-null fish showed increased sensitivity to retene toxicity, whereas Cyp1b1-null fish were less susceptible, and microbiome elimination had no significant effect. Zebrafish required exposure to retene between 24 and 48 hours post fertilization (hpf) to exhibit toxicity. After static exposure, retene concentrations in zebrafish embryos increased until 24 hpf, peaked between 24 and 36 hpf, and decreased rapidly thereafter. We detected retene metabolites at 36 and 48 hpf, indicating metabolic onset preceding toxicity. This study highlights the value of combining molecular and systems biology approaches with mechanistic and predictive toxicology to interrogate the role of biotransformation in AHR-dependent toxicity.
Collapse
Affiliation(s)
- Christian I Rude
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Lindsay B Wilson
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Jane La Du
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Priscila M Lalli
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Sean M Colby
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Katherine J Schultz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Jordan N Smith
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Katrina M Waters
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Robyn L Tanguay
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| |
Collapse
|
3
|
Zhao W, Chen Y, Hu N, Long D, Cao Y. The uses of zebrafish (Danio rerio) as an in vivo model for toxicological studies: A review based on bibliometrics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116023. [PMID: 38290311 DOI: 10.1016/j.ecoenv.2024.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
An in vivo model is necessary for toxicology. This review analyzed the uses of zebrafish (Danio rerio) in toxicology based on bibliometrics. Totally 56,816 publications about zebrafish from 2002 to 2023 were found in Web of Science Core Collection, with Toxicology as the top 6 among all disciplines. Accordingly, the bibliometric map reveals that "toxicity" has become a hot keyword. It further reveals that the most common exposure types include acute, chronic, and combined exposure. The toxicological effects include behavioral, intestinal, cardiovascular, hepatic, endocrine toxicity, neurotoxicity, immunotoxicity, genotoxicity, and reproductive and transgenerational toxicity. The mechanisms include oxidative stress, inflammation, autophagy, and dysbiosis of gut microbiota. The toxicants commonly evaluated by using zebrafish model include nanomaterials, arsenic, metals, bisphenol, and dioxin. Overall, zebrafish provide a unique and well-accepted model to investigate the toxicological effects and mechanisms. We also discussed the possible ways to address some of the limitations of zebrafish model, such as the combination of human organoids to avoid species differences.
Collapse
Affiliation(s)
- Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yuna Chen
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, PR China.
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
4
|
Zeng L, Wang YH, Song W, Ai CX, Liu ZM, Yu MH, Zou WG. Different effects of continuous and pulsed Benzo[a]pyrene exposure on metabolism and antioxidant defense of large yellow croaker: Depend on exposure duration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115370. [PMID: 37586193 DOI: 10.1016/j.ecoenv.2023.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
This study aims to compare differential effects of continuous and pulsed BaP exposures on metabolism and antioxidant defense in the liver of large yellow croaker. Fish were subjected to BaP for 4 days and 36 days in three exposure regimes with the same time-averaged concentration of BaP: 4 μg/L BaP continuously, 8 μg/L BaP for 24 h every other day or 16 μg/L BaP for 24 h every 4 days. Our results showed that compared to pulsed BaP exposures, continuous BaP exposure reduced BaP metabolism (CYP1A, CYP3A and AHR transcriptional expressions, GSH content, GSH/GSSG ratio, EROD and GST activities) and antioxidant defense (T-SOD activity) on day 4, resulting to the increases in MDA and PC contents, indicating that continuous BaP exposure induced more severe oxidative damage during the early stage of exposure. But continuous BaP exposure reduced MDA and PC contents by improving BaP metabolism and antioxidant defense during the late stage of exposure. CYP1B transcriptional expression and CAT activity were unsuitable biomarkers of both continuous and pulsed BaP exposures. In conclusion, our results demonstrated differential effects of continuous and pulsed exposures on BaP metabolism and antioxidant responses, which were depend on exposure duration.
Collapse
Affiliation(s)
- Lin Zeng
- College of Food and Biological Engineering, Bengbu University, Bengbu 233030, PR China.
| | - Yong-Hong Wang
- College of Food and Biological Engineering, Bengbu University, Bengbu 233030, PR China
| | - Wei Song
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; Joint Laboratory for Deep Blue Fishery Engineering, Qingdao 266237, PR China.
| | - Chun-Xiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Zi-Ming Liu
- College of Ecology, Lishui University, Lishui 323000, PR China
| | - Min-Hui Yu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Wei-Guang Zou
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|