1
|
Xing ZY, Zhang CJ, Liu LJ. Targeting both ferroptosis and pyroptosis may represent potential therapies for acute liver failure. World J Gastroenterol 2024; 30:3791-3798. [PMID: 39351426 PMCID: PMC11438622 DOI: 10.3748/wjg.v30.i33.3791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
In this editorial, we comment on the article published in the recent issue of the World Journal of Gastroenterology. Acute liver failure (ALF) is a fatal disease that causes uncontrolled massive hepatocyte death and rapid loss of liver function. Ferroptosis and pyroptosis, cell death forms that can be initiated or blocked concurrently, can play significant roles in developing inflammation and various malignancies. However, their roles in ALF remain unclear. The article discovered the positive feedback between ferroptosis and pyroptosis in the progression of ALF, and revealed that the silent information regulator sirtuin 1 (SIRT1) inhibits both pathways through p53, dramatically reducing inflammation and protecting hepatocytes. This suggests the potential use of SIRT1 and its downstream molecules as therapeutics for ALF. Thus, we will discuss the role of ferroptosis and pyroptosis in ALF and the crosstalk between these cell death mechanisms. Additionally, we address potential treatments that could alleviate ALF by simultaneously inhibiting both cell death pathways, as well as examples of SIRT1 activators being used as disease treatment strategies, providing new insights into the therapy of ALF.
Collapse
Affiliation(s)
- Zhong-Yuan Xing
- Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Chuan-Jie Zhang
- Department of Children Health Care, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430061, Hubei Province, China
| | - Li-Juan Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
2
|
Rao X, Lei Z, Zhu H, Luo K, Hu C. Knockdown of KIF23 alleviates the progression of asthma by inhibiting pyroptosis. BMJ Open Respir Res 2024; 11:e002089. [PMID: 38569671 PMCID: PMC10989115 DOI: 10.1136/bmjresp-2023-002089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Asthma is a chronic disease affecting the lower respiratory tract, which can lead to death in severe cases. The cause of asthma is not fully known, so exploring its potential mechanism is necessary for the targeted therapy of asthma. METHOD Asthma mouse model was established with ovalbumin (OVA). H&E staining, immunohistochemistry and ELISA were used to detect the inflammatory response in asthma. Transcriptome sequencing was performed to screen differentially expressed genes (DEGs). The role of KIF23 silencing in cell viability, proliferation and apoptosis was explored by cell counting kit-8, EdU assay and flow cytometry. Effects of KIF23 knockdown on inflammation, oxidative stress and pyroptosis were detected by ELISA and western blot. After screening KIF23-related signalling pathways, the effect of KIF23 on p53 signalling pathway was explored by western blot. RESULTS In the asthma model, the levels of caspase-3, IgG in serum and inflammatory factors (interleukin (IL)-1β, KC and tumour necrosis factor (TNF)-α) in serum and bronchoalveolar lavage fluid were increased. Transcriptome sequencing showed that there were 352 DEGs in the asthma model, and 7 hub genes including KIF23 were identified. Knockdown of KIF23 increased cell proliferation and inhibited apoptosis, inflammation and pyroptosis of BEAS-2B cells induced by IL-13 in vitro. In vivo experiments verified that knockdown of KIF23 inhibited oxidative stress, inflammation and pyroptosis to alleviate OVA-induced asthma mice. In addition, p53 signalling pathway was suppressed by KIF23 knockdown. CONCLUSION Knockdown of KIF23 alleviated the progression of asthma by suppressing pyroptosis and inhibited p53 signalling pathway.
Collapse
Affiliation(s)
- Xingyu Rao
- Department of Pediatrics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zicheng Lei
- Department of Pediatrics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Huifang Zhu
- Department of Pediatrics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kaiyuan Luo
- Department of Pediatrics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chaohua Hu
- Department of Surgery Ⅰ, Third Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Wang XT, Li L, Zhu Z, Huang YL, Chen HH, Shi ZY, Deng QM, Wu K, Xia LJ, Mai W, Yang JR, Kong FB. SIVA-1 enhances acquired chemotherapeutic drug resistance of gastric cancer in vivo by regulating the ARF/MDM2/p53 pathway. Heliyon 2024; 10:e24394. [PMID: 38312638 PMCID: PMC10834467 DOI: 10.1016/j.heliyon.2024.e24394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
SIVA-1 has been shown to affect apoptotic processes in various different cell lines, and SIVA-1 significantly contributes to the decreased responsiveness of cancer cells to some chemotherapy agents. However, whether SIVA-1 has potential application in gastric cancer remains unknown. Therefore, the objective of this investigation was to clarify the distinct function of SIVA-1 in chemotherapeutic drug resistance within a living murine model with gastric malignancy, and initially elucidate the underlying mechanisms. In an established multidrug-resistant gastric cancer xenograft mouse model, lentivirus, named Lv-SIVA-1, was injected into xenograft tumors, and increased the mRNA and protein expression of endogenous SIVA-1 in tumors. Immunohistochemical assays of xenograft tumor showed that SIVA-1 was significantly upregulated, and the protein expression levels of SIVA-1 were highly increased, as detected by Western blotting. In addition, we detected the role of SIVA-1 in cell proliferation and cell apoptosis in gastric cancer cells by TUNEL and found that SIVA-1 decreased tumor cell apoptosis and promoted tumor growth in vivo. Using a TMT assay between tumor tissues of experimental and control groups, differentially expressed proteins were examined and three potential biomarkers of multidrug resistance (ARF, MDM2, and p53) were screened. We further investigated the molecular mechanism by which SIVA-1 played an efficient role against chemotherapies and found that overexpressed SIVA-1 leads to increased ARF and MDM2 expression and suppressed expression of p53 in tumor tissue. In conclusion, SIVA-1 plays a significant role in the multidrug resistance of gastric tumors. In addition, overexpressed SIVA-1 positively regulates cell proliferation, adjusts cycle progression, and reduces the response to drug treatment for gastric cancer in an ARF/MDM2/p53-dependent manner. This novel research provides a basis for chemical management of gastric cancer through regulation of SIVA-1 expression.
Collapse
Affiliation(s)
- Xiao-Tong Wang
- Departments of Gastrointestinal, Hernia and Enterofistula Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Lei Li
- Departments of Gastrointestinal, Hernia and Enterofistula Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Zhou Zhu
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Yu-Liang Huang
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Huan-Huan Chen
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Zheng-Yi Shi
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Qiao-Ming Deng
- Department of Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, 530023, People's Republic of China
| | - Kun Wu
- Department of Surgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, 530001, People's Republic of China
| | - Long-Jie Xia
- Department of Cosmetology and Plastic Surgery Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, People's Republic of China
| | - Wei Mai
- Departments of Gastrointestinal, Hernia and Enterofistula Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Jian-Rong Yang
- Department of Hepatobiliary, Pancreas and Spleen Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health, 6 Taoyuan Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
- Jinan University, Guangzhou, Guangdong Province, 510362, People's Republic of China
| | - Fan-Biao Kong
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
- Jinan University, Guangzhou, Guangdong Province, 510362, People's Republic of China
| |
Collapse
|