1
|
Majer C, Lingel H, Arra A, Heuft HG, Bretschneider D, Balk S, Vogel K, Brunner-Weinzierl MC. PD-1/PD-L1 Control of Antigen-Specifically Activated CD4 T-Cells of Neonates. Int J Mol Sci 2023; 24:ijms24065662. [PMID: 36982735 PMCID: PMC10051326 DOI: 10.3390/ijms24065662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Newborns are highly susceptible to infections; however, the underlying mechanisms that regulate the anti-microbial T-helper cells shortly after birth remain incompletely understood. To address neonatal antigen-specific human T-cell responses against bacteria, Staphylococcus aureus (S. aureus) was used as a model pathogen and comparatively analyzed in terms of the polyclonal staphylococcal enterotoxin B (SEB) superantigen responses. Here, we report that neonatal CD4 T-cells perform activation-induced events upon S. aureus/APC-encounter including the expression of CD40L and PD-1, as well as the production of Th1 cytokines, concomitant to T-cell proliferation. The application of a multiple regression analysis revealed that the proliferation of neonatal T-helper cells was determined by sex, IL-2 receptor expression and the impact of the PD-1/PD-L1 blockade. Indeed, the treatment of S. aureus-activated neonatal T-helper cells with PD-1 and PD-L1 blocking antibodies revealed the specific regulation of the immediate neonatal T-cell responses with respect to the proliferation and frequencies of IFNγ producers, which resembled in part the response of adults’ memory T-cells. Intriguingly, the generation of multifunctional T-helper cells was regulated by the PD-1/PD-L1 axis exclusively in the neonatal CD4 T-cell lineage. Together, albeit missing memory T-cells in neonates, their unexperienced CD4 T-cells are well adapted to mount immediate and strong anti-bacterial responses that are tightly controlled by the PD-1/PD-L1 axis, thereby resembling the regulation of recalled memory T-cells of adults.
Collapse
Affiliation(s)
- Christiane Majer
- Department of Experimental Pediatrics, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Holger Lingel
- Department of Experimental Pediatrics, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Aditya Arra
- Department of Experimental Pediatrics, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Hans-Gert Heuft
- Institute of Transfusion Medicine and Immunohematology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | | | - Silke Balk
- Department of Experimental Pediatrics, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Katrin Vogel
- Department of Experimental Pediatrics, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Monika C. Brunner-Weinzierl
- Department of Experimental Pediatrics, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-6724003
| |
Collapse
|
2
|
Chakraborty B, Byemerwa J, Krebs T, Lim F, Chang CY, McDonnell DP. Estrogen Receptor Signaling in the Immune System. Endocr Rev 2023; 44:117-141. [PMID: 35709009 DOI: 10.1210/endrev/bnac017] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 01/14/2023]
Abstract
The immune system functions in a sexually dimorphic manner, with females exhibiting more robust immune responses than males. However, how female sex hormones affect immune function in normal homeostasis and in autoimmunity is poorly understood. In this review, we discuss how estrogens affect innate and adaptive immune cell activity and how dysregulation of estrogen signaling underlies the pathobiology of some autoimmune diseases and cancers. The potential roles of the major circulating estrogens, and each of the 3 estrogen receptors (ERα, ERβ, and G-protein coupled receptor) in the regulation of the activity of different immune cells are considered. This provides the framework for a discussion of the impact of ER modulators (aromatase inhibitors, selective estrogen receptor modulators, and selective estrogen receptor downregulators) on immunity. Synthesis of this information is timely given the considerable interest of late in defining the mechanistic basis of sex-biased responses/outcomes in patients with different cancers treated with immune checkpoint blockade. It will also be instructive with respect to the further development of ER modulators that modulate immunity in a therapeutically useful manner.
Collapse
Affiliation(s)
- Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jovita Byemerwa
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Taylor Krebs
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.,Known Medicine, Salt Lake City, UT 84108, USA
| | - Felicia Lim
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
3
|
McCombe PA, Greer JM. Effects of biological sex and pregnancy in experimental autoimmune encephalomyelitis: It's complicated. Front Immunol 2022; 13:1059833. [PMID: 36518769 PMCID: PMC9742606 DOI: 10.3389/fimmu.2022.1059833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) can be induced in many animal strains by inoculation with central nervous system antigens and adjuvant or by the passive transfer of lymphocytes reactive with these antigens and is widely used as an animal model for multiple sclerosis (MS). There are reports that female sex and pregnancy affect EAE. Here we review the effects of biological sex and the effects of pregnancy on the clinical features (including disease susceptibility) and pathophysiology of EAE. We also review reports of the possible mechanisms underlying these differences. These include sex-related differences in the immune system and in the central nervous system, the effects of hormones and the sex chromosomes and molecules unique to pregnancy. We also review sex differences in the response to factors that can modify the course of EAE. Our conclusion is that the effects of biological sex in EAE vary amongst animal models and should not be widely extrapolated. In EAE, it is therefore essential that studies looking at the effects of biological sex or pregnancy give full information about the model that is used (i.e. animal strain, sex, the inducing antigen, timing of EAE induction in relation to pregnancy, etc.). In addition, it would be preferable if more than one EAE model were used, to show if any observed effects are generalizable. This is clearly a field that requires further work. However, understanding of the mechanisms of sex differences could lead to greater understanding of EAE, and suggest possible therapies for MS.
Collapse
Affiliation(s)
| | - Judith M. Greer
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Immune Cell Contributors to the Female Sex Bias in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Curr Top Behav Neurosci 2022; 62:333-373. [PMID: 35467295 DOI: 10.1007/7854_2022_324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, demyelinating disease of the central nervous system (CNS) that leads to axonal damage and accumulation of disability. Relapsing-remitting MS (RR-MS) is the most frequent presentation of MS and this form of MS is three times more prevalent in females than in males. This female bias in MS is apparent only after puberty, suggesting a role for sex hormones in this regulation; however, very little is known of the biological mechanisms that underpin the sex difference in MS onset. Experimental autoimmune encephalomyelitis (EAE) is an animal model of RR-MS that presents more severely in females in certain mouse strains and thus has been useful to study sex differences in CNS autoimmunity. Here, we overview the immunopathogenesis of MS and EAE and how immune mechanisms in these diseases differ between a male and female. We further describe how females exhibit more robust myelin-specific T helper (Th) 1 immunity in MS and EAE and how this sex bias in Th cells is conveyed by sex hormone effects on the T cells, antigen presenting cells, regulatory T cells, and innate lymphoid cell populations.
Collapse
|
5
|
Frasca F, Piticchio T, Le Moli R, Malaguarnera R, Campennì A, Cannavò S, Ruggeri RM. Recent insights into the pathogenesis of autoimmune hypophysitis. Expert Rev Clin Immunol 2021; 17:1175-1185. [PMID: 34464545 DOI: 10.1080/1744666x.2021.1974297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Hypophysitis is an inflammation of the pituitary gland and a rare case of hypopituitarism. Despite the expanding spectrum of histological variants and causative agents, its pathogenesis is far to be fully understood. The present review is focused on recent evidence concerning the pathogenesis of autoimmune hypophysitis by searching through online databases like MEDLINE and Scopus up to May 2021. AREAS COVERED Hypophysitis frequently develops in the context of a strong autoimmune background, including a wide spectrum of subtypes ranging from the commonest form of lymphocytic hypophysitis to the newly described and less common IgG4-, anti-PIT-1, and ICI-induced forms. A peculiar combination of genetic predisposition, pituitary damage and immunological setting represents the pathogenetic basis of autoimmune hypophysitis, which is characterized by diffuse infiltration of the gland by lymphocytes and variable degrees of fibrosis followed by pituitary cell destruction. Anti-pituitary antibodies (APA) have been described in sera from patients suffering from autoimmune hypophysitis, though their pathophysiological significance remains largely unknown and their diagnostic value limited. EXPERT OPINION In recent years hypophysitis has gained interest due to the increased number of new diagnoses and the recognition of novel subtypes. Further studies could lead to improvements in biochemical/immunological diagnosis and targeted treatments.
Collapse
Affiliation(s)
- Francesco Frasca
- Endocrinology Section, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
| | - Tommaso Piticchio
- Endocrinology Section, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
| | - Rosario Le Moli
- Endocrinology Section, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
| | | | - Alfredo Campennì
- Unit of Nuclear Medicine, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Messina, Italy
| | - Salvatore Cannavò
- Unit of Endocrinology, University Hospital of Messina, Messina, Italy.,Department of Human Pathology DETEV, University of Messina, Messina, Italy
| | - Rosaria Maddalena Ruggeri
- Unit of Endocrinology, University Hospital of Messina, Messina, Italy.,Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Immune checkpoint inhibitors-induced autoimmunity: The impact of gender. Autoimmun Rev 2020; 19:102590. [PMID: 32561463 DOI: 10.1016/j.autrev.2020.102590] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To evaluate prevalence and clinical features of immune-related adverse events (irAEs) to immune checkpoint inhibitors (ICIs) in accordance with the gender of treated cancer patients. METHODS A systematic review of the medical literature was conducted by searching all available clinical data up to December 2019 in several databases using a combination of MESH terms related to immune checkpoint inhibitors, autoimmunity, and gender. Analyzed data were related to all FDA approved ICIs and respective indications in cancer. RESULTS According to data from the literature, male display a slightly lower frequencies of ICIs-related endocrinopathies compared with females, specifically thyroid dysfunction. On the contrary, ICIs-hypophysitis has been reported at higher rates among males compared with females. ICI-induced Sicca/Sjogren's syndrome showed a more frequent occurrence in men than the idiopathic primary form. No differences in gender distribution seem to arise in hematologic and gastrointestinal-irAEs. Interestingly, the gender distribution of neurologic and vascular ICIs-irAEs appears male-dominant. CONCLUSIONS The present systematic review highlights for the first time that the distribution of patients experiencing irAEs associated with ICIs changes among the genders according to the specific drug used, the frequency of the cancer and of the autoimmune conditions in the general population.
Collapse
|
7
|
Lingel H, Brunner-Weinzierl MC. CTLA-4 (CD152): A versatile receptor for immune-based therapy. Semin Immunol 2019; 42:101298. [DOI: 10.1016/j.smim.2019.101298] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022]
|
8
|
Schmitz K, de Bruin N, Bishay P, Männich J, Häussler A, Altmann C, Ferreirós N, Lötsch J, Ultsch A, Parnham MJ, Geisslinger G, Tegeder I. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice. EMBO Mol Med 2015; 6:1398-422. [PMID: 25269445 PMCID: PMC4237468 DOI: 10.15252/emmm.201404168] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4(+)CD25(+)FoxP3(+) regulatory T cells, CTLA4(+) inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial.
Collapse
Affiliation(s)
- Katja Schmitz
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany
| | - Natasja de Bruin
- Fraunhofer Institute of Molecular Biology and Applied Ecology Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Philipp Bishay
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany
| | - Julia Männich
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany
| | - Annett Häussler
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany
| | - Christine Altmann
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany
| | - Jörn Lötsch
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany Fraunhofer Institute of Molecular Biology and Applied Ecology Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Alfred Ultsch
- DataBionics Research Group, University of Marburg, Marburg, Germany
| | - Michael J Parnham
- Fraunhofer Institute of Molecular Biology and Applied Ecology Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany Fraunhofer Institute of Molecular Biology and Applied Ecology Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany Fraunhofer Institute of Molecular Biology and Applied Ecology Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| |
Collapse
|