1
|
Mariano DC, Dias GM, Castro MR, Tschoeke DA, de Oliveira FJ, Sérvulo EFC, Neves BC. Exploring the diversity and functional profile of microbial communities of Brazilian soils with high salinity and oil contamination. Heliyon 2024; 10:e34336. [PMID: 39082007 PMCID: PMC11284384 DOI: 10.1016/j.heliyon.2024.e34336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Environmental pollution associated with the petroleum industry is a major problem worldwide. Microbial degradation is extremely important whether in the extractive process or in bioremediation of contaminants. Assessing the local microbiota and its potential for degradation is crucial for implementing effective bioremediation strategies. Herein, contaminated soil samples of onshore oil fields from a semiarid region in the Northeast of Brazil were investigated using metagenomics and metataxonomics. These soils exhibited hydrocarbon contamination and high salinity indices, while a control sample was collected from an uncontaminated area. The shotgun analysis revealed the predominance of Actinomycetota and Pseudomonadota, while 16S rRNA gene amplicon analysis of the samples showed Actinomycetota, Bacillota, and Pseudomonadota as the most abundant. The Archaea domain phylotypes were assigned to Thermoproteota and Methanobacteriota. Functional analysis and metabolic profile of the soil microbiomes exhibited a broader metabolic repertoire in the uncontaminated soil, while degradation pathways and surfactant biosynthesis presented higher values in the contaminated soils, where degradation pathways of xenobiotic and aromatic compounds were also present. Biosurfactant synthetic pathways were abundant, with predominance of lipopeptides. The present work uncovers several microbial drivers of oil degradation and mechanisms of adaptation to high salinity, which are pivotal traits for sustainable soil recovery strategies.
Collapse
Affiliation(s)
- Danielly C.O. Mariano
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
- Escola de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Graciela Maria Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Michele Rocha Castro
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
- Departamento de Biologia, Instituto Federal do Rio de Janeiro (IFRJ), Brazil
| | - Diogo Antonio Tschoeke
- Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | | | - Bianca Cruz Neves
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| |
Collapse
|
2
|
Medić AB, Karadžić IM. Pseudomonas in environmental bioremediation of hydrocarbons and phenolic compounds- key catabolic degradation enzymes and new analytical platforms for comprehensive investigation. World J Microbiol Biotechnol 2022; 38:165. [PMID: 35861883 DOI: 10.1007/s11274-022-03349-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
Pollution of the environment with petroleum hydrocarbons and phenolic compounds is one of the biggest problems in the age of industrialization and high technology. Species of the genus Pseudomonas, present in almost all hydrocarbon-contaminated areas, play a particular role in biodegradation of these xenobiotics, as the genus has the potential to decompose various hydrocarbons and phenolic compounds, using them as its only source of carbon. Plasticity of carbon metabolism is one of the adaptive strategies used by Pseudomonas to survive exposure to toxic organic compounds, so a good knowledge of its mechanisms of degradation enables the development of new strategies for the treatment of pollutants in the environment. The capacity of microorganisms to metabolize aromatic compounds has contributed to the evolutionally conserved oxygenases. Regardless of the differences in structure and complexity between mono- and polycyclic aromatic hydrocarbons, all these compounds are thermodynamically stable and chemically inert, so for their decomposition, ring activation by oxygenases is crucial. Genus Pseudomonas uses several upper and lower metabolic pathways to transform and degrade hydrocarbons, phenolic compounds, and petroleum hydrocarbons. Data obtained from newly developed omics analytical platforms have enormous potential not only to facilitate our understanding of processes at the molecular level but also enable us to instigate and monitor complex biodegradations by Pseudomonas. Biotechnological application of aromatic metabolic pathways in Pseudomonas to bioremediation of environments polluted with crude oil, biovalorization of lignin for production of bioplastics, biofuel, and bio-based chemicals, as well as Pseudomonas-assisted phytoremediation are also considered.
Collapse
Affiliation(s)
- Ana B Medić
- University of Belgrade, Faculty of Medicine, Department of Chemistry, Belgrade, Serbia.
| | - Ivanka M Karadžić
- University of Belgrade, Faculty of Medicine, Department of Chemistry, Belgrade, Serbia
| |
Collapse
|
3
|
Pan J, Wei F, Liu Y, Xu Y, Ma Y. Unraveling the role of GntR on the regulation of alkane hydroxylase AlkB
2
in
Pseudomonas aeruginosa
DN1 based on transcriptome analysis. J Appl Microbiol 2022; 132:2812-2822. [DOI: 10.1111/jam.15453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Jincheng Pan
- Shaanxi Provincial Key Laboratory of Biotechnology Key Laboratory of Resources Biology and Biotechnology in Western China Ministry of Education College of Life Science Northwest University 229 Taibai North Rd Xi’an Shaanxi 710069 China
| | - Fengdan Wei
- Shaanxi Provincial Key Laboratory of Biotechnology Key Laboratory of Resources Biology and Biotechnology in Western China Ministry of Education College of Life Science Northwest University 229 Taibai North Rd Xi’an Shaanxi 710069 China
| | - Yani Liu
- Shaanxi Provincial Key Laboratory of Biotechnology Key Laboratory of Resources Biology and Biotechnology in Western China Ministry of Education College of Life Science Northwest University 229 Taibai North Rd Xi’an Shaanxi 710069 China
| | - Yuanyuan Xu
- Shaanxi Provincial Key Laboratory of Biotechnology Key Laboratory of Resources Biology and Biotechnology in Western China Ministry of Education College of Life Science Northwest University 229 Taibai North Rd Xi’an Shaanxi 710069 China
| | - Yanling Ma
- Shaanxi Provincial Key Laboratory of Biotechnology Key Laboratory of Resources Biology and Biotechnology in Western China Ministry of Education College of Life Science Northwest University 229 Taibai North Rd Xi’an Shaanxi 710069 China
| |
Collapse
|
4
|
Xue SW, Tian YX, Pan JC, Liu YN, Ma YL. Binding interaction of a ring-hydroxylating dioxygenase with fluoranthene in Pseudomonas aeruginosa DN1. Sci Rep 2021; 11:21317. [PMID: 34716364 PMCID: PMC8556375 DOI: 10.1038/s41598-021-00783-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/18/2021] [Indexed: 11/11/2022] Open
Abstract
Pseudomonas aeruginosa DN1 can efficiently utilize fluoranthene as its sole carbon source, and the initial reaction in the biodegradation process is catalyzed by a ring-hydroxylating dioxygenase (RHD). To clarify the binding interaction of RHD with fluoranthene in the strain DN1, the genes encoding alpha subunit (RS30940) and beta subunit (RS05115) of RHD were functionally characterized through multi-technique combination such as gene knockout and homology modeling as well as molecular docking analysis. The results showed that the mutants lacking the characteristic alpha subunit and/or beta subunit failed to degrade fluoranthene effectively. Based on the translated protein sequence and Ramachandran plot, 96.5% of the primary amino-acid sequences of the alpha subunit in the modeled structure of the RHD were in the permitted region, 2.3% in the allowed region, but 1.2% in the disallowed area. The catalytic mechanism mediated by key residues was proposed by the simulations of molecular docking, wherein the active site of alpha subunit constituted a triangle structure of the mononuclear iron atom and the two oxygen atoms coupled with the predicted catalytic ternary of His217-His222-Asp372 for the dihydroxylation reaction with fluoranthene. Those amino acid residues adjacent to fluoranthene were nonpolar groups, and the C7-C8 positions on the fluoranthene ring were estimated to be the best oxidation sites. The distance of C7-O and C8-O was 3.77 Å and 3.04 Å respectively, and both of them were parallel. The results of synchronous fluorescence and site-directed mutagenesis confirmed the roles of the predicted residues during catalysis. This binding interaction could enhance our understanding of the catalytic mechanism of RHDs and provide a solid foundation for further enzymatic modification.
Collapse
Affiliation(s)
- Shu-Wen Xue
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Yue-Xin Tian
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Jin-Cheng Pan
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Ya-Ni Liu
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Yan-Ling Ma
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| |
Collapse
|
5
|
R M, S I, Kv S, Kp S, T R, G S, K R. Genomic characterization of Enterobacter xiangfangensis STP-3: Application to real time petroleum oil sludge bioremediation. Microbiol Res 2021; 253:126882. [PMID: 34619415 DOI: 10.1016/j.micres.2021.126882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Sustainable treatment of petroleum oil sludge still remains as a major challenge to petroleum refineries. Bioremediation is the promising technology involving bacteria for simultaneous production of biosurfactant and followed by degradation of petroleum compounds. Complete genomic knowledge on such potential microbes could accentuate its successful exploitation. The present study discusses the genomic characteristics of novel biosurfactant producing petrophilic/ petroleum hydrocarbon degrading strain, Enterobacter xiangfangensis STP-3, isolated from petroleum refinery oil sludge contaminated soil. The genome has 4,584,462 bp and 4372 protein coding sequences. Functional analysis using the RAST and KEGG databases revealed the presence of biosynthetic gene clusters linked to glycolipid and lipopeptide production and multiple key candidate genes linked with the degradation pathway of petroleum hydrocarbons. Orthology study revealed diversity in gene clusters associated to membrane transport, carbohydrate, amino acid metabolism, virulence and defence mechanisms, and nucleoside and nucleotide synthesis. The comparative analysis with 27 other genomes predicted that the core genome contributes to its inherent bioremediation potential, whereas the accessory genome influences its environmental adaptability in unconventional environmental conditions. Further, experimental results showed that E. xiangfangensis STP-3 was able to degrade PHCs by 82 % in 14 days during the bioremediation of real time petroleum oil sludge with the concomitant production of biosurfactant and metabolic enzymes, To the best of our knowledge, no comprehensive genomic study has been previously reported on the biotechnological prospective of this species.
Collapse
Affiliation(s)
- Muneeswari R
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Kancheepuram District, Tamil Nadu, India
| | - Iyappan S
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Kancheepuram District, Tamil Nadu, India
| | - Swathi Kv
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Kancheepuram District, Tamil Nadu, India
| | - Sudheesh Kp
- Nutrition, Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, 600028, Tamil Nadu, India
| | - Rajesh T
- CSIR-National Environmental Engineering Research Institute, Chennai Zonal Lab, Tamil Nadu, India
| | - Sekaran G
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Kancheepuram District, Tamil Nadu, India
| | - Ramani K
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Kancheepuram District, Tamil Nadu, India.
| |
Collapse
|
6
|
Singha LP, Pandey P. Rhizosphere assisted bioengineering approaches for the mitigation of petroleum hydrocarbons contamination in soil. Crit Rev Biotechnol 2021; 41:749-766. [PMID: 33626996 DOI: 10.1080/07388551.2021.1888066] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The high demand for petroleum oil has led to hydrocarbon contamination in soil, including agricultural lands, and many other ecosystems across the globe. Physical and chemical treatments are effective strategies for the removal of high contamination levels and are useful for small areas, although with concerns of cost-effectiveness. Alternatively, several bacteria belonging to the Phylum: Proteobacteria, Bacteroidetes, Actinobacteria, Nocardioides, or Firmicutes are used for biodegradation of different hydrocarbons - aliphatic, polyaromatic hydrocarbons (PAH), and asphaltenes in the oil-contaminated soil. The rhizoremediation strategy with plant-microbe interactions has prospects to achieve the desired result in the field conditions. However, adequate biostimulation, and bioaugmentation with the suitable plant-microbe combination, and efficiency under a toxic environment needs to be evaluated. Modifying the microbiomes to achieve better biodegradation of contaminants is an upcoming strategy popularly known as microbiome engineering. In this review, rhizoremediation for the successful removal of the hydrocarbons have been critically discussed, with challenges for making it a feasible technology.HIGHLIGHTSPetroleum hydrocarbon contamination has increased around the globe.Rhizoremediation has the potential for the mitigation of pollutants from the contaminated sites.An accurate and detailed analysis of the physio-chemical and climatic conditions of the contaminated sites must be focused on.The suitable plant and bacteria, with other major considerations, may be employed for in-situ remediation.The appropriate data should be obtained using the omics approach to help toward the success of the rhizoremediation strategy.
Collapse
Affiliation(s)
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, India
| |
Collapse
|
7
|
Characterisation of hydrocarbon degradation, biosurfactant production, and biofilm formation in Serratia sp. Tan611: a new strain isolated from industrially contaminated environment in Algeria. Antonie van Leeuwenhoek 2021; 114:411-424. [PMID: 33587226 DOI: 10.1007/s10482-021-01527-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
A novel bacterial strain was isolated from industrially contaminated waste water. In the presence of crude oil, this strain was shown to reduce the rate of total petroleum hydrocarbons (TPH) up to 97.10% in 24 h. This bacterium was subsequently identified by 16S rRNA gene sequence analysis and affiliated to the Serratia genus by the RDP classifier. Its genome was sequenced and annotated, and genes coding for catechol 1,2 dioxygenase and naphthalene 1,2-dioxygenase system involved in aromatic hydrocarbon catabolism, and LadA-type monooxygenases involved in alkane degradation, were identified. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of crude oil after biological treatment showed that Serratia sp. Tan611 strain was able to degrade n-alkanes (from C13 to C25). This bacterium was also shown to produce a biosurfactant, the emulsification index (E24) reaching 43.47% and 65.22%, against vegetable and crude oil, respectively. Finally, the formation of a biofilm was increased in the presence of crude oil. These observations make Serratia sp. Tan611 a good candidate for hydrocarbon bioremediation.
Collapse
|
8
|
Mahto KU, Das S. Whole genome characterization and phenanthrene catabolic pathway of a biofilm forming marine bacterium Pseudomonas aeruginosa PFL-P1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111087. [PMID: 32871516 DOI: 10.1016/j.ecoenv.2020.111087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 05/02/2023]
Abstract
Pseudomonas aeruginosa is a small rod shaped Gram-negative bacterium of Gammaproteobacteria class known for its metabolic versatility. P. aeruginosa PFL-P1 was isolated from Polycyclic Aromatic Hydrocarbons (PAHs) contaminated site of Paradip Port, Odisha Coast, India. The strain showed excellent biofilm formation and could retain its ability to form biofilm grown with different PAHs in monoculture as well as co-cultures. To explore mechanistic insights of PAHs metabolism, the whole genome of the strain was sequenced. Next generation sequencing unfolded a genome size of 6,333,060 bp encoding 5857 CDSs. Gene ontology distribution assigned to a total of 2862 genes, wherein 2235 genes were allocated to biological process, 1549 genes to cellular component and 2339 genes to molecular function. A total of 318 horizontally transferred genes were identified when the genome was compared with the reference genomes of P. aeruginosa PAO1 and P. aeruginosa DSM 50071. Further comparison of P. aeruginosa PFL-P1 genome with P. putida containing TOL plasmids revealed similarities in the meta cleavage pathway employed for degradation of aromatic compounds like xylene and toluene. Gene annotation and pathway analysis unveiled 145 genes involved in xenobiotic biodegradation and metabolism. The biofilm cultures of P. aeruginosa PFL-P1 could degrade ~74% phenanthrene within 120 h while degradation increased up to ~76% in co-culture condition. GC-MS analysis indicated presence of diverse metabolites indicating the involvement of multiple pathways for one of the PAHs (phenanthrene) degradation. The strain also possesses the genetic machinery to utilize diverse toxic aromatic compounds such as naphthalene, benzoate, aminobenzoate, fluorobenzoate, toluene, xylene, styrene, atrazine, caprolactam etc. Common catabolic gene clusters such as benABCD, xylXYZ and catAB were observed within the genome of P. aeruginosa PFL-P1 which play key roles in the degradation of various toxic aromatic compounds.
Collapse
Affiliation(s)
- Kumari Uma Mahto
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
9
|
Li YP, Pan JC, Ma YL. Elucidation of multiple alkane hydroxylase systems in biodegradation of crude oil
n
‐alkane pollution by
Pseudomonas aeruginosa
DN1. J Appl Microbiol 2019; 128:151-160. [DOI: 10.1111/jam.14470] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Y. P. Li
- Shaanxi Provincial Key Laboratory of Biotechnology Key Laboratory of Resources Biology and Biotechnology in Western China Ministry of Education College of Life Science Northwest University Xi’an, Shaanxi China
| | - J. C. Pan
- Shaanxi Provincial Key Laboratory of Biotechnology Key Laboratory of Resources Biology and Biotechnology in Western China Ministry of Education College of Life Science Northwest University Xi’an, Shaanxi China
| | - Y. L. Ma
- Shaanxi Provincial Key Laboratory of Biotechnology Key Laboratory of Resources Biology and Biotechnology in Western China Ministry of Education College of Life Science Northwest University Xi’an, Shaanxi China
| |
Collapse
|
10
|
Madrid F, Rubio-Bellido M, Villaverde J, Peña A, Morillo E. Natural and assisted dissipation of polycyclic aromatic hydrocarbons in a long-term co-contaminated soil with creosote and potentially toxic elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:705-714. [PMID: 30743956 DOI: 10.1016/j.scitotenv.2018.12.376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/10/2018] [Accepted: 12/24/2018] [Indexed: 05/20/2023]
Abstract
An enhanced bioremediation strategy was applied to an industrial soil co-contaminated with Polycyclic Aromatic Hydrocarbons (PAHs) and Potentially Toxic Elements (PTEs). Hydroxypropyl-β-cyclodextrin (HPBCD) and a natural mixture of two rhamnolipids (RL) were added to increase PAHs bioavailability, and combined with a microbial consortium (MC) to biodegrade soil PAHs. Bioavailability of only six PAHs (3-, 4-ring PAHs) increased when using HPBCD, with a maximum increase about 2.8-fold higher. The highest dose of HPBCD (5%) enhanced PAH degradation, with the best results for 4-ring PAHs with treatments of HPBCD + MC (up to 48% degradation for pyrene and 43% for fluoranthene), whereas dissipation for 5-ring PAHs was very low and for 6-ring was negligible. The use of RL increased the bioavailability of 13 of the 16 PAHs studied, reaching up to 60-fold higher values for phenanthrene or 18-fold higher for acenaphtene. RL addition did not show degradation improvement in any situation, and even inhibited the scarce degradation observed in the control treatment. The high increase in availability of both PAHs and mainly PTEs when using RL as amendment could make them toxic for microorganisms. In fact, Microtox Acute Toxicity test using Aliivibrio fischeri and the absence of colony forming units (CFUs) of indigenous bacteria demonstrated the extremely high levels of toxicity in RL treated soil.
Collapse
Affiliation(s)
- F Madrid
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Apdo. 1052, 41080 Sevilla, Spain
| | - M Rubio-Bellido
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Apdo. 1052, 41080 Sevilla, Spain
| | - J Villaverde
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Apdo. 1052, 41080 Sevilla, Spain
| | - A Peña
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avda. de las Palmeras 4, 18100, Armilla, Granada, Spain
| | - E Morillo
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Apdo. 1052, 41080 Sevilla, Spain.
| |
Collapse
|
11
|
He C, Li Y, Huang C, Chen F, Ma Y. Genome Sequence and Metabolic Analysis of a Fluoranthene-Degrading Strain Pseudomonas aeruginosa DN1. Front Microbiol 2018; 9:2595. [PMID: 30429835 PMCID: PMC6220107 DOI: 10.3389/fmicb.2018.02595] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/11/2018] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas aeruginosa DN1, isolated from petroleum-contaminated soil, showed excellent degradation ability toward diverse polycyclic aromatic hydrocarbons (PAHs). Many studies have been done to improve its degradation ability. However, the molecular mechanisms of PAHs degradation in DN1 strain are unclear. In this study, the whole genome of DN1 strain was sequenced and analyzed. Its genome contains 6,641,902 bp and encodes 6,684 putative open reading frames (ORFs), which has the largest genome in almost all the comparative Pseudomonas strains. Results of gene annotation showed that this strain harbored over 100 candidate genes involved in PAHs degradation, including those encoding 25 dioxygenases, four ring-hydroxylating dioxygenases, five ring-cleaving dioxygenases, and various catabolic enzymes, transcriptional regulators, and transporters in the degradation pathways. In addition, gene knockout experiments revealed that the disruption of some key PAHs degradation genes in DN1 strain, such as catA, pcaG, pcaH, and rhdA, did not completely inhibit fluoranthene degradation, even though their degradative rate reduced to some extent. Three intermediate metabolites, including 9-hydroxyfluorene, 1-acenaphthenone, and 1, 8-naphthalic anhydride, were identified as the dominating intermediates in presence of 50 μg/mL fluoranthene as the sole carbon source according to gas chromatography mass spectrometry analysis. Taken together, the genomic and metabolic analysis indicated that the fluoranthene degradation by DN1 strain was initiated by dioxygenation at the C-1, 2-, C-2, 3-, and C-7, 8- positions. These results provide new insights into the genomic plasticity and environmental adaptation of DN1 strain.
Collapse
Affiliation(s)
- Chunqiu He
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yanpeng Li
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Chao Huang
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Fulin Chen
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yanling Ma
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
12
|
He C, Dong W, Li J, Li Y, Huang C, Ma Y. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil. Biotechnol Lett 2017; 39:1381-1388. [DOI: 10.1007/s10529-017-2370-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/25/2017] [Indexed: 12/21/2022]
|