Zhang C, Lu K, Wang J, Qian Q, Yuan X, Pu C. Molecular cloning, expression HSP70 and its response to bacterial challenge and heat stress in Microptenus salmoides.
FISH PHYSIOLOGY AND BIOCHEMISTRY 2020;
46:2389-2402. [PMID:
33029752 DOI:
10.1007/s10695-020-00883-9]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
The gene encoding HSP70 was isolated from Microptenus salmoides by homologous cloning and rapid amplification of cDNA ends (RACE). The HSP70 transcripts were 2116 bp long and contained 1953 open reading frames encoding proteins of 650 amino acids with a molecular mass of 71.2 kDa and theoretical isoelectric point of 5.22. The qRT-PCR analysis showed that the HSP70 gene was differentially expressed in various tissues under normal conditions, and the highest HSP70 level was observed in the spleen and the lowest levels in the muscle and heart. The clear time-dependent expression level of HSP70 was observed after bacterial challenge and heat stress. A significant increase in HSP70 expression level was detected and reached a maximum at 3 h and 6 h in liver, spleens and gill tissues after Aeromonas hydrophila infection and heat stress, respectively (P < 0.05). As time progressed, the expression of HSP70 transcript was downregulated and mostly dropped back to the original level at 48 h. The concentration of cortisol, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) increased as the time of stress progressed, with the highest level found on 3 h and later declined rapidly and reached to the control levels at the 48 h. Those results suggested that HSP70 was involved in the immune response to bacterial challenge and heat stress. The cloning and expression analysis of the HSP70 provide theoretical basis to further study the mechanism of anti-adverseness in Microptenus salmoides.
Collapse