1
|
Kan D, Tian M, Ruan Y, Han H. Phosphorus-Solubilizing Bacteria Enhance Cadmium Immobilization and Gene Expression in Wheat Roots to Reduce Cadmium Uptake. PLANTS (BASEL, SWITZERLAND) 2024; 13:1989. [PMID: 39065516 PMCID: PMC11280808 DOI: 10.3390/plants13141989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The application of phosphorus-solubilizing bacteria is an effective method for increasing the available phosphorus content and inhibiting wheat uptake of heavy metals. However, further research is needed on the mechanism by which phosphorus-solubilizing bacteria inhibit cadmium (Cd) uptake in wheat roots and its impact on the expression of root-related genes. Here, the effects of strain Klebsiella aerogenes M2 on Cd absorption in wheat and the expression of root-related Cd detoxification and immobilization genes were determined. Compared with the control, strain M2 reduced (64.1-64.6%) Cd uptake by wheat roots. Cd fluorescence staining revealed that strain M2 blocked the entry of exogenous Cd into the root interior and enhanced the immobilization of Cd by cell walls. Forty-seven genes related to Cd detoxification, including genes encoding peroxidase, chalcone synthase, and naringenin 3-dioxygenase, were upregulated in the Cd+M2 treatment. Strain M2 enhanced the Cd resistance and detoxification activity of wheat roots through the regulation of flavonoid biosynthesis and antioxidant enzyme activity. Moreover, strain M2 regulated the expression of genes related to phenylalanine metabolism and the MAPK signaling pathway to enhance Cd immobilization in roots. These results provide a theoretical basis for the use of phosphorus-solubilizing bacteria to remediate Cd-contaminated fields and reduce Cd uptake in wheat.
Collapse
Affiliation(s)
- Delong Kan
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (D.K.); (M.T.)
| | - Minyu Tian
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (D.K.); (M.T.)
| | - Ying Ruan
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (D.K.); (M.T.)
| | - Hui Han
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
2
|
Yao Y, He Z, Li X, Xu J, Han X, Liang H, Zhuo R, Qiu W. Genome-wide identification of bHLH gene family and its response to cadmium stress in Populus × canescens. PeerJ 2024; 12:e17410. [PMID: 38818458 PMCID: PMC11138517 DOI: 10.7717/peerj.17410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
The basic helix-loop-helix (bHLH) gene family is integral to various aspects of plant development and the orchestration of stress response. This study focuses on the bHLH genes within Populus × canescens, a poplar species noted for its significant tolerance to cadmium (Cd) stress. Through our comprehensive genomic analysis, we have identified and characterized 170 bHLH genes within the P. canescens genome. These genes have been systematically classified into 22 distant subfamilies based on their evolutionary relationships. A notable conservation in gene structure and motif compositions were conserved across these subfamilies. Further analysis of the promoter regions of these genes revealed an abundance of essential cis-acting element, which are associated with plant hormonal regulation, development processes, and stress response pathway. Utilizing quantitative PCR (qPCR), we have documented the differential regulation of PcbHLHs in response to elevated Cd concentrations, with distinct expression patterns observed across various tissues. This study is poised to unravel the molecular mechanism underpinning Cd tolerance in P. canescens, offering valuable insights for the development of new cultivars with enhanced Cd accumulation capacity and tolerance. Such advancements are crucial for implementing effective phytoremediation strategies to mitigate soil pollution caused by Cd.
Collapse
Affiliation(s)
- Yuneng Yao
- China Three Gorges University, Yichang, China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- State Key Laboratory of Tree Genetic and Breeding, Chinese Academy of Forestry, Beijing, China
| | | | - Xinmeng Li
- China Three Gorges University, Yichang, China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- State Key Laboratory of Tree Genetic and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Jing Xu
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- State Key Laboratory of Tree Genetic and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Xiaojiao Han
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- State Key Laboratory of Tree Genetic and Breeding, Chinese Academy of Forestry, Beijing, China
| | | | - Renying Zhuo
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- State Key Laboratory of Tree Genetic and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Wenmin Qiu
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- State Key Laboratory of Tree Genetic and Breeding, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|