1
|
Memar MY, Vosughi M, Rahbar Saadat Y, Ardalan M, Yekani M, Niknafs B, Zununi Vahed S. Virulence genes and antibiotic susceptibility patterns of Escherichia coli isolated from nosocomial urinary tract infections in the northwest of Iran during 2022-2023: A cross-sectional study. Health Sci Rep 2024; 7:e70149. [PMID: 39479286 PMCID: PMC11522605 DOI: 10.1002/hsr2.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Background and Aims Urinary tract infections (UTIs) are prevalent among hospitalized patients, constituting the most frequent health-care infections. Uropathogenic Escherichia coli (UPEC) is leading causative agent of UTIs. The present study was aimed to examine the susceptibility of UPEC isolates obtained from nosocomial cases to antibiotics, as well as their biofilm formation capability and frequency of virulence genes. Methods A total of 100 UPEC isolates were collected from nosocomial UTIs at Imam Reza Hospitals in Tabriz, Iran, spanning from April 2022 to January 2023. The antimicrobial susceptibility patterns were evaluated using the disk diffusion method, along with the detection of broad-spectrum β-lactam enzymes (ESBLs) and carbapenemases. The ability of isolates to form biofilms was assessed using the microtiter-plate method, while the PCR method was employed to identify the presence of virulence genes. Results The highest resistance was observed toward piperacillin (82%), followed by aztreonam and ciprofloxacin (81%), while the lowest resistance was found against piperacillin/tazobactam (12%) and meropenem (9%). ESBLs were detected in 62% of the isolates. The microtiter-plate results revealed strong, moderate, and weak biofilm formation abilities in 32%, 33%, and 24% of the isolates, respectively. The most prevalent virulence gene was fimA (74%) followed by hlyF (68%), papA (44%), papC (32%), iroN (26%), and cnf (20%). Conclusion The elevated levels of resistance to multiple antimicrobial agents, coupled with the co-presence of virulence genes and biofilm formation abilities, contribute to the persistence of UPEC-related infections, particularly in hospitalized patients. These findings underscore the necessity of implementing an effective program to control nosocomial UTIs caused by UPEC in the healthcare centers.
Collapse
Affiliation(s)
- Mohammad Yousef Memar
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Masoud Vosughi
- Kidney Research CenterTabriz University of Medical SciencesTabrizIran
- Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | | | | | - Mina Yekani
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Bahram Niknafs
- Kidney Research CenterTabriz University of Medical SciencesTabrizIran
| | | |
Collapse
|
2
|
Hussen BM, Najmadden ZB, Abdullah SR, Rasul MF, Mustafa SA, Ghafouri-Fard S, Taheri M. CRISPR/Cas9 gene editing: a novel strategy for fighting drug resistance in respiratory disorders. Cell Commun Signal 2024; 22:329. [PMID: 38877530 PMCID: PMC11179281 DOI: 10.1186/s12964-024-01713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024] Open
Abstract
Respiratory disorders are among the conditions that affect the respiratory system. The healthcare sector faces challenges due to the emergence of drug resistance to prescribed medications for these illnesses. However, there is a technology called CRISPR/Cas9, which uses RNA to guide DNA targeting. This technology has revolutionized our ability to manipulate and visualize the genome, leading to advancements in research and treatment development. It can effectively reverse epigenetic alterations that contribute to drug resistance. Some studies focused on health have shown that targeting genes using CRISPR/Cas9 can be challenging when it comes to reducing drug resistance in patients with respiratory disorders. Nevertheless, it is important to acknowledge the limitations of this technology, such as off-target effects, immune system reactions to Cas9, and challenges associated with delivery methods. Despite these limitations, this review aims to provide knowledge about CRISPR/Cas9 genome editing tools and explore how they can help overcome resistance in patients with respiratory disorders. Additionally, this study discusses concerns related to applications of CRISPR and provides an overview of successful clinical trial studies.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, 44001, Kurdistan Region, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Zana Baqi Najmadden
- Research Center, University of Halabja, Halabja, 46018, Kurdistan region, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Tishk International University, Kurdistan Region, Iraq
| | - Suhad A Mustafa
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
3
|
Mohamed MYI, Habib I. Pathogenic E. coli in the Food Chain across the Arab Countries: A Descriptive Review. Foods 2023; 12:3726. [PMID: 37893619 PMCID: PMC10606471 DOI: 10.3390/foods12203726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Foodborne bacterial infections caused by pathogens are a widespread problem in the Middle East, leading to significant economic losses and negative impacts on public health. This review aims to offer insights into the recent literature regarding the occurrence of harmful E. coli bacteria in the food supply of Arab countries. Additionally, it aims to summarize existing information on health issues and the state of resistance to antibiotics. The reviewed evidence highlights a lack of a comprehensive understanding of the extent to which harmful E. coli genes are present in the food supply of Arab countries. Efforts to identify the source of harmful E. coli in the Arab world through molecular characterization are limited. The Gulf Cooperation Council (GCC) countries have conducted few surveys specifically targeting harmful E. coli in the food supply. Despite having qualitative data that indicate the presence or absence of harmful E. coli, there is a noticeable absence of quantitative data regarding the actual numbers of harmful E. coli in chicken meat supplies across all Arab countries. While reports about harmful E. coli in animal-derived foods are common, especially in North African Arab countries, the literature emphasized in this review underscores the ongoing challenge that harmful E. coli pose to food safety and public health in Arab countries.
Collapse
Affiliation(s)
- Mohamed-Yousif Ibrahim Mohamed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab of Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Ihab Habib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab of Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
- Department of Environmental Health, High Institute of Public Health, Alexandria University, Alexandria P.O. Box 21511, Egypt
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
4
|
Arafi V, Hasani A, Sadeghi J, Varshochi M, Poortahmasebi V, Hasani A, Hasani R. Uropathogenic Escherichia coli endeavors: an insight into the characteristic features, resistance mechanism, and treatment choice. Arch Microbiol 2023; 205:226. [PMID: 37156886 DOI: 10.1007/s00203-023-03553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) are the strains diverted from the intestinal status and account mainly for uropathogenicity. This pathotype has gained specifications in structure and virulence to turn into a competent uropathogenic organism. Biofilm formation and antibiotic resistance play an important role in the organism's persistence in the urinary tract. Increased consumption of carbapenem prescribed for multidrug-resistant (MDR) and Extended-spectrum-beta lactamase (ESBL)-producing UPECs, has added to the expansion of resistance. The World Health Organization (WHO) and Centre for Disease Control (CDC) placed the Carbapenem-resistant Enterobacteriaceae (CRE) on their treatment priority lists. Understanding both patterns of pathogenicity, and multiple drug resistance may provide guidance for the rational use of anti-bacterial agents in the clinic. Developing an effective vaccine, adherence-inhibiting compounds, cranberry juice, and probiotics are non-antibiotical approaches proposed for the treatment of drug-resistant UTIs. We aimed to review the distinguishing characteristics, current therapeutic options and promising non-antibiotical approaches against ESBL-producing and CRE UPECs.
Collapse
Affiliation(s)
- Vahid Arafi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit, Sina Educational, Research and Treatment Centre, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javid Sadeghi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Varshochi
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Hasani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
5
|
Hussen BM, Sabir DK, Karim Y, Karim KK, Hidayat HJ. RETRACTED ARTICLE: Genome sequence analysis of SARS-COV-2 isolated from a COVID-19 patient in Erbil, Iraq. APPLIED NANOSCIENCE 2023; 13:3147. [PMID: 35155057 PMCID: PMC8818371 DOI: 10.1007/s13204-021-02300-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/27/2021] [Indexed: 01/07/2023]
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Dana Khdr Sabir
- Department of Medical Laboratory Sciences, University Charmo, Kurdistan Region, Iraq
| | - Yasin Karim
- Medical Research Center, Hawler Medical University, Kurdistan Region, Iraq
| | | | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University, Kurdistan Region, Iraq
| |
Collapse
|
6
|
Arafa SH, Alshehri WA, Organji SR, Elbanna K, Obaid NA, Aldosari MS, Asiri FH, Ahmad I, Abulreesh HH. Antimicrobial Resistance, Virulence Factor-Encoding Genes, and Biofilm-Forming Ability of Community-Associated Uropathogenic Escherichia coli in Western Saudi Arabia. Pol J Microbiol 2022; 71:325-339. [PMID: 36048880 DOI: 10.33073/pjm-2022-029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/01/2022] [Indexed: 11/05/2022] Open
Abstract
To explore the prevalence of multidrug-resistant community-associated uropathogenic Escherichia coli (UPEC) and their virulence factors in Western Saudi Arabia. A total of 1,000 urine samples were examined for the presence of E. coli by selective plating on MacConkey, CLED, and sheep blood agar. Antimicrobial susceptibility patterns were determined using Vitek® 2 Compact (MIC) and the disc diffusion method with Mueller-Hinton agar. Genes encoding virulence factors (kpsMTII, traT, sat, csgA, vat, and iutA) were detected by PCR. The overall prevalence of UTI-associated E. coli was low, and a higher prevalence was detected in samples of female origin. Many of the isolates exhibited resistance to norfloxacin, and 60% of the isolates showed resistance to ampicillin. No resistance to imipenem, meropenem, or ertapenem was detected. In general, half of the isolates showed multiple resistance patterns. UPEC exhibited a weak ability to form biofilms, where no correlation was observed between multidrug resistance and biofilm-forming ability. All uropathogenic E. coli isolates carried the kpsMTII, iutA, traT, and csgA genes, whereas the low number of the isolates harbored the sat and vat genes. The diversity of virulence factors harbored by community-associated UPEC may render them more virulent and further explain the recurrence/relapse cases among community-associated UITs. To the best of our knowledge, this study constitutes the first exploration of virulence, biofilm-forming ability, and its association with multidrug resistance among UPEC isolates in Saudi Arabia. Further investigations are needed to elucidate the epidemiology of community-associated UPEC in Saudi Arabia.
Collapse
Affiliation(s)
- Sara H Arafa
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.,Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wafa A Alshehri
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Sameer R Organji
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.,Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Khaled Elbanna
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.,Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Najla A Obaid
- College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Fatimah H Asiri
- King Abdulaziz Hospital, Ministry of Health, Makkah, Saudi Arabia
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Hussein H Abulreesh
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.,Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
7
|
Mhawesh A, khudair M, Abbas ON. Major Genetic Determinants of Extended-Spectrum Β-Lactamase (ESBL), Carbapenemase, Fosfomycin and Colistin Resistance in Escherichia Coli from Intensive Care Units. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.01.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Escherichia coli (E. coli) strains placed in predominant nosocomial bacteria in intensive care units (ICUs), resulting in severe drug-resistant infections. Non-susceptibility to β-lactams and last-line drugs such as Fosfomycin and Colistin cause limited availability of infections eradication. The objective of this study included the determination of genes encoding extended-spectrum β-lactamase (ESBL), Carbapenemase, Colistin, and Fosfomycin resistance in clinical isolates of E. coli in ICUs. A total of 200 E. coli isolates were identified from ICU settings. The CTXM-1, SHV, IMP and OXA-48 genes were detected for β-lactamases using the polymerase chain reaction (PCR) technique. The fosA3 and mcr-1 and mcr-2 genes were also detected for resistance against Fosfomycin and Colistin. The CTX-M1, SHV, IMP and OXA-48 genes were detected in 60 (30%), 56 (28%), 28 (14%) and 4 (8%) of isolates. none of the E. coli isolates had the mcr-2 and fosA3 genes. Despite the existence of resistance genes to the third-generation antibiotics and Carbapenemase s, any isolates had genes for resistance to Fosfomycin and Colistin. More studies are needed to follow the resistance genes against last-resort antibiotics.
Collapse
Affiliation(s)
- Ahmed Mhawesh
- Dept. of Med. and Mol. Biotech., College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Marwa khudair
- DNA forensic Center for Research and Training, Al-Nahrain University, Baghdad, Iraq
| | - Omer N. Abbas
- Post Graduate, Dept. of Quality Control, Grain Board of Iraq, Ministry of Trade, Baghdad, Iraq
| |
Collapse
|
8
|
Gatya Al-Mayahie SM, Al-Guranie DRT, Hussein AA, Bachai ZA. Prevalence of common carbapenemase genes and multidrug resistance among uropathogenic Escherichia coli phylogroup B2 isolates from outpatients in Wasit Province/ Iraq. PLoS One 2022; 17:e0262984. [PMID: 35077517 PMCID: PMC8789106 DOI: 10.1371/journal.pone.0262984] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/10/2022] [Indexed: 01/04/2023] Open
Abstract
Carbapenems are the last resort antimicrobials for the treatment of extended spectrum β-lactamases (ESBLs) producing Enterobacteriaceae. Emergence of carbapenems resistant group B2 uropathogenic E. coli (UPEC) is a major concern because of their high virulence. Prevalence of these enzymes and multidrug resistance (MDR) among B2 UPEC isolates from Iraqi outpatients with acute urinary tract infection (UTI) was evaluated in this research. Urine cultures were performed and the isolates were identified biochemically. Escherichia coli isolates were tested for phylogroup reference by quadraplex PCR, then B2 isolates were detected for antimicrobial resistance by disc diffusion test and carbapenemase genes by PCR. Escherichia coli was the most prevalent among Gram-negative isolates (66.6%) and B2 was the most detected phylogroup among E. coli isolates (33.9%). Most of B2 isolates showed high resistance rates to tested antimicrobials, especially β-lactams with MDR revealed in 100% of them. Whereas, low resistance rates were noted against carbapenems, aminoglycosides and nitrofurantoin. Carbapenemase genes were detected in 76.3% of B2 isolates. Of which, blaOXA-48 was the most frequent (57.8%), followed by blaPER (47.3%), blaKPC (15.7%), blaVEB and blaVIM (10.5%, for each). Whereas, blaGES and blaIMP genes were not found. Coproduction of these genes occurred among 17 isolates. The combination of blaOXA-48 and blaPER was the most frequent (41.1%). All carbapenemase producing isolates were MDR. These results revealed high prevalence of carbapenemase genes and MDR among B2 UPEC recovered in this study. In the study area. it is strongly advised to use aminoglycosides and nitrofurantoin for empirical treatment of UPEC.
Collapse
Affiliation(s)
| | | | - Aya Aziz Hussein
- Department of Biology, College of Science, Wasit University, Al-Kut City, Wasit Province, Iraq
| | - Zaineb Ali Bachai
- Department of Biology, College of Science, Wasit University, Al-Kut City, Wasit Province, Iraq
| |
Collapse
|
9
|
Saleh RO, Hussen BM, Mubarak SM, Mostafavi SKS. High diversity of virulent and multidrug-resistant Stenotrophomonas maltophilia in Iraq. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Shanon MR, Al-Marzoqi AH, Hussein HJ. Prototheca spp. co-infections and their virulence factors in human protothecosis in Hillah city, Iraq. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2020.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|