1
|
Wang D, Ma X, Hu H, Ren J, Liu J, Zhou H. Functional identification of two HMGB1 paralogues provides insights into autophagic machinery in teleost. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109457. [PMID: 38387685 DOI: 10.1016/j.fsi.2024.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
High mobility group box 1 (HMGB1) is a multifunctional regulator that plays different roles in various physiological and pathological processes including cell development, autophagy, inflammation, tumor metastasis, and cell death based on its cellular localization. Unlike mammalian HMGB1, two HMGB1 paralogues (HMGB1a and HMGB1b) have been found in fathead minnow and other fish species and its function as an inflammatory cytokine has been well investigated. However, the role of fish HMGB1 in autophagy regulation has not been well clarified. In the present study, we generated HMGB1 paralogues single (HMGB1a-/- and HMGB1b-/-) and double knockout (DKO) epithelioma papulosum cyprini (EPC) cells from fathead minnow by CRISPR/Cas9 system, and the knockout efficiency of these genes was verified at both gene and protein levels. In this context, the effects of HMGB1 gene knockout on the protein expression of microtubule-associated protein 1 light chain 3 II (LC3-II), an autophagy marker, were determined, showing that single knockout of two HMGB1 paralogues significantly decreased the expression of LC3-II, and these inhibitory effects were further amplified in HMGB1 DKO cells under both basal and rapamycin treatment conditions, indicating the role of two HMGB1 paralogues in fish autophagy. In agreement with this notion, overexpression of HMGB1a or HMGB1b with Flag-tag markedly upregulated LC3-II protein expression. Interestingly, overexpressing two paralogues distributed in both cytoplasm and nucleus. Finally, the role of HMGB1-mediated autophagy was further explored, finding that HMGB1 could interact with Beclin1, a key initiation factor of autophagy. Taken together, these findings highlighted the role of HMGB1 paralogues as the autophagy regulator and increased our understanding of autophagic machinery in teleost.
Collapse
Affiliation(s)
- Dan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyu Ma
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hengyi Hu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingqi Ren
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaxi Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Vásquez-Suárez A, Muñoz-Flores C, Ortega L, Roa F, Castillo C, Romero A, Parra N, Sandoval F, Macaya L, González-Chavarría I, Astuya A, Starck MF, Villegas MF, Agurto N, Montesino R, Sánchez O, Valenzuela A, Toledo JR, Acosta J. Design and functional characterization of Salmo salar TLR5 agonist peptides derived from high mobility group B1 acidic tail. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109373. [PMID: 38272332 DOI: 10.1016/j.fsi.2024.109373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Toll-like receptor 5 (TLR5) responds to the monomeric form of flagellin and induces the MyD88-depending signaling pathway, activating proinflammatory transcription factors such as NF-κB and the consequent induction of cytokines. On the other hand, HMGB1 is a highly conserved non-histone chromosomal protein shown to interact with and activate TLR5. The present work aimed to design and characterize TLR5 agonist peptides derived from the acidic tail of Salmo salar HMGB1 based on the structural knowledge of the TLR5 surface using global molecular docking platforms. Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of the complex. Circular dichroism spectra were recorded for each peptide selected for synthesis. Only intrinsically disordered peptides (6W, 11W, and SsOri) were selected for experimental functional assay. The functional characterization of the peptides was performed by NF-κB activation assays, RT-qPCR gene expression assays, and Piscirickettsia salmonis challenge in SHK-1 cells. The 6W and 11W peptides increased the nuclear translation of p65 and phosphorylation. In addition, the peptides induced the expression of genes related to the TLR5 pathway activation, pro- and anti-inflammatory response, and differentiation and activation of T lymphocytes towards phenotypes such as TH1, TH17, and TH2. Finally, it was shown that the 11W peptide protects immune cells against infection with P. salmonis bacteria. Overall, the results indicate the usefulness of novel peptides as potential immunostimulants in salmonids.
Collapse
Affiliation(s)
- Aleikar Vásquez-Suárez
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carolina Muñoz-Flores
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leonardo Ortega
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Roa
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carolina Castillo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Natalie Parra
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Sandoval
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Luis Macaya
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Iván González-Chavarría
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Allisson Astuya
- Laboratorio de Genómica Marina y Cultivo Celular, Departamento de Oceanografía y COPAS Sur-Austral, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - María Francisca Starck
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Milton F Villegas
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Niza Agurto
- Laboratorio de Piscicultura y Patología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Raquel Montesino
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Oliberto Sánchez
- Laboratorio de Biofármacos Recombinantes, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ariel Valenzuela
- Laboratorio de Piscicultura y Patología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Jorge R Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Jannel Acosta
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
3
|
Haws W, England S, Grieb G, Susana G, Hernandez S, Mirer H, Lewis K. Analyses of binding partners and functional domains for the developmentally essential protein Hmx3a/HMX3. Sci Rep 2023; 13:1151. [PMID: 36670152 PMCID: PMC9859826 DOI: 10.1038/s41598-023-27878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
HMX3 is a homeodomain protein with essential roles in CNS and ear development. Homeodomains are DNA-binding domains and hence homeodomain-containing proteins are usually assumed to be transcription factors. However, intriguingly, our recent data suggest that zebrafish Hmx3a may not require its homeodomain to function, raising the important question of what molecular interactions mediate its effects. To investigate this, we performed a yeast two-hybrid screen and identified 539 potential binding partners of mouse HMX3. Using co-immunoprecipitation, we tested whether a prioritized subset of these interactions are conserved in zebrafish and found that Tle3b, Azin1b, Prmt2, Hmgb1a, and Hmgn3 bind Hmx3a. Next, we tested whether these proteins bind the products of four distinct hmx3a mutant alleles that all lack the homeodomain. Embryos homozygous for two of these alleles develop abnormally and die, whereas zebrafish homozygous for the other two alleles are viable. We found that all four mutations abrogate binding to Prmt2 and Tle3b, whereas Azin1b binding was preserved in all cases. Interestingly, Hmgb1a and Hmgn3 had more affinity for products of the viable mutant alleles. These data shed light on how HMX3/Hmx3a might function at a molecular level and identify new targets for future study in these vital developmental processes.
Collapse
Affiliation(s)
- William Haws
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Samantha England
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Ginny Grieb
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Gabriela Susana
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Sophie Hernandez
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Hunter Mirer
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Katharine Lewis
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
4
|
Leiba J, Özbilgiç R, Hernández L, Demou M, Lutfalla G, Yatime L, Nguyen-Chi M. Molecular Actors of Inflammation and Their Signaling Pathways: Mechanistic Insights from Zebrafish. BIOLOGY 2023; 12:153. [PMID: 36829432 PMCID: PMC9952950 DOI: 10.3390/biology12020153] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Inflammation is a hallmark of the physiological response to aggressions. It is orchestrated by a plethora of molecules that detect the danger, signal intracellularly, and activate immune mechanisms to fight the threat. Understanding these processes at a level that allows to modulate their fate in a pathological context strongly relies on in vivo studies, as these can capture the complexity of the whole process and integrate the intricate interplay between the cellular and molecular actors of inflammation. Over the years, zebrafish has proven to be a well-recognized model to study immune responses linked to human physiopathology. We here provide a systematic review of the molecular effectors of inflammation known in this vertebrate and recapitulate their modes of action, as inferred from sterile or infection-based inflammatory models. We present a comprehensive analysis of their sequence, expression, and tissue distribution and summarize the tools that have been developed to study their function. We further highlight how these tools helped gain insights into the mechanisms of immune cell activation, induction, or resolution of inflammation, by uncovering downstream receptors and signaling pathways. These progresses pave the way for more refined models of inflammation, mimicking human diseases and enabling drug development using zebrafish models.
Collapse
|
5
|
Lu L, Dai S, Liu L, Liu J, Zhang X, Huang X, Ouyang P, Geng Y, Li Z, Chen D. Identification and characterization of high mobility group box 1 and high mobility group box 2 in Siberian sturgeon (Acipenser baerii). Gene 2022; 850:146932. [PMID: 36191827 DOI: 10.1016/j.gene.2022.146932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
High mobility group box 1 (HMGB1) and high mobility group box 2 (HMGB2) were highly conserved nonhistone chromosomal proteins involved in DNA damage repair, innate immune and inflammatory response. In this study, Acipenser baerii HMGB1 (AbHMGB1) and HMGB 2 (HMGB2) were identified. The open reading frame (ORF) of AbHMGB1 was 621 bp which encoded 206 amino acids, and the ORF of AbHMGB2 was 630 bp encoded 209 amino acids. AbHMGB1 and AbHMGB2 were conserved compared with bony fish by phylogenetic analyzing. qRT-PCR showed that AbHMGB1 and AbHMGB2 were expressed in all examined tissues, AbHMGB1 was expressed abundantly in muscle, followed by head kidney and brain, and AbHMGB2 was highest expressed in gill, followed by brain and muscle. After Streptococcus iniae infection and PAMPs treatment, AbHMGB1 and AbHMGB2 were induced significantly. This study indicated that AbHMGB1 and AbHMGB2 are involved in the process of pathogenic infection and provided a basis for exploring the mechanism of Acipenser baerii enteritis induced by Streptococcus iniae.
Collapse
Affiliation(s)
- Lu Lu
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaotong Dai
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lulu Liu
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxi Liu
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhang
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoli Huang
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Ouyang
- Research Center of Aquatic Animal Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Geng
- Research Center of Aquatic Animal Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiqiong Li
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Defang Chen
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
6
|
Luo ZH, Li Y, Wang YL, Zhang ZP, Zou PF. Molecular cloning and functional characterization of HMGB1 and HMGB2 in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2022; 127:855-865. [PMID: 35850457 DOI: 10.1016/j.fsi.2022.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/25/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
High mobility group box 1 (HMGB1) and HMGB2 have been demonstrated to be key regulators not only in DNA recombination, replication, gene transcription, but also in host inflammation and immune responses. In the present study, orthologs of HMGB1 and HMGB2 named Lc-HMGB1 and Lc-HMGB2 were characterized in large yellow croaker (Larimichthys crocea). The ORFs of Lc-HMGB1 and Lc-HMGB2 are 621 bp and 648 bp, encoding proteins of 206 aa and 215 aa, with the putative Lc-HMGB1 and Lc-HMGB2 proteins both contain two HMG domains, respectively. The genome organizations of Lc-HMGB1 and Lc-HMGB2 are both composed of four exons and three introns, which are conserved in vertebrates. Lc-HMGB1 and Lc-HMGB2 were identified as cell nucleus localized proteins, and were ubiquitously distributed in the examined organs/tissues. Additionally, Lc-HMGB1 was significantly up-regulated under LPS and PGN stimulation, whereas the stimulation of poly I:C, LPS, PGN, and Pseudomonas plecoglossicida infection could significantly induce Lc-HMGB2 expression in vivo. Notably, both Lc-HMGB1 and Lc-HMGB2 overexpression could significantly up-regulated the expression of diverse immune-related genes, including IFN1, IRF3, ISG15, ISG56, RSAD2, g-type lysozyme, and TNF-α. Moreover, overexpression of Lc-HMGB1 could also induce the expression of IRF7 and Mx. These results collectively indicate that Lc-HMGB1 and Lc-HMGB2 play important roles in host immune responses against pathogen infection.
Collapse
Affiliation(s)
- Zi Hao Luo
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Ying Li
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Tan Kah Kee College, Xiamen University, Zhangzhou, Fujian Province, 363105, China.
| | - Yi Lei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, Fujian Province, 352103, China
| | - Zi Ping Zhang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, Fujian Province, 352103, China; College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China
| | - Peng Fei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China.
| |
Collapse
|
7
|
Huang C, Zhang J, Zhou D, Huang Y, Su L, Yang G, Luo W, Chen Z, Wang H, Guo T. Identification and candidate gene screening of qCIR9.1, a novel QTL associated with anther culturability in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2097-2111. [PMID: 33713337 DOI: 10.1007/s00122-021-03808-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
A novel QTL, qCIR9.1, that controls callus induction rate in anther culture was identified on chromosome 9 in rice, and based on RNA-seq data, Os09g0551600 was the most promising candidate gene. Anther culture, a doubled haploid (DH) technique, has become an important technology in many plant-breeding programmes. Although anther culturability is the key factor in this technique, its genetic mechanisms in rice remain poorly understood. In this study, we mapped quantitative trait loci (QTLs) responsible for anther culturability by using 192 recombinant inbred lines (RILs) derived from YZX (Oryza sativa ssp. indica) × 02428 (Oryza sativa ssp. japonica) and a high-density bin map. A total of eight QTLs for anther culturability were detected in three environments. Among these QTLs, a novel major QTL for callus induction rate (CIR) named qCIR9.1 was repeatedly mapped to a ~ 100 kb genomic interval on chromosome 9 and explained 8.39-14.14% of the phenotypic variation. Additionally, RNA sequencing (RNA-seq) was performed for the parents (YZX and 02428), low- (L-Pool) and high-CIR RILs (H-Pool) after 16 and 26 days of culture. By using the RNA of the bulked RILs for background normalization, the number of differentially expressed genes (DEGs) both between the parents and between the bulked RILs after 26 days of culture was drastically reduced to only 78. Among these DEGs, only one gene, Os09g0551600, encoding a high-mobility group (HMG) protein, was located in the candidate region of qCIR9.1. qRT-PCR analysis of Os09g0551600 showed the same results as RNA-seq, and the expression of this gene was decreased in the low-callus-induction parent (YZX) and L-Pool. Our results provide a foundational step for further cloning of qCIR9.1 and will be very useful for improving anther culturability in rice.
Collapse
Affiliation(s)
- Cuihong Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jian Zhang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Danhua Zhou
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yuting Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Ling Su
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Guili Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wenlong Luo
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
8
|
Can H, Chanumolu SK, Gonzalez-Muñoz E, Prukudom S, Otu HH, Cibelli JB. Comparative analysis of single-cell transcriptomics in human and Zebrafish oocytes. BMC Genomics 2020; 21:471. [PMID: 32640983 PMCID: PMC7346435 DOI: 10.1186/s12864-020-06860-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Zebrafish is a popular model organism, which is widely used in developmental biology research. Despite its general use, the direct comparison of the zebrafish and human oocyte transcriptomes has not been well studied. It is significant to see if the similarity observed between the two organisms at the gene sequence level is also observed at the expression level in key cell types such as the oocyte. Results We performed single-cell RNA-seq of the zebrafish oocyte and compared it with two studies that have performed single-cell RNA-seq of the human oocyte. We carried out a comparative analysis of genes expressed in the oocyte and genes highly expressed in the oocyte across the three studies. Overall, we found high consistency between the human studies and high concordance in expression for the orthologous genes in the two organisms. According to the Ensembl database, about 60% of the human protein coding genes are orthologous to the zebrafish genes. Our results showed that a higher percentage of the genes that are highly expressed in both organisms show orthology compared to the lower expressed genes. Systems biology analysis of the genes highly expressed in the three studies showed significant overlap of the enriched pathways and GO terms. Moreover, orthologous genes that are commonly overexpressed in both organisms were involved in biological mechanisms that are functionally essential to the oocyte. Conclusions Orthologous genes are concurrently highly expressed in the oocytes of the two organisms and these genes belong to similar functional categories. Our results provide evidence that zebrafish could serve as a valid model organism to study the oocyte with direct implications in human.
Collapse
Affiliation(s)
- Handan Can
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Sree K Chanumolu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Elena Gonzalez-Muñoz
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, 29590, Málaga, Spain.,Department of Cell Biology, Genetics and Physiology, University of Málaga and; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBNE), 29071, Málaga, Spain
| | - Sukumal Prukudom
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Hasan H Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Jose B Cibelli
- Departments of Animal Science and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Mohd Ghani F, Bhassu S. A new insight to biomarkers related to resistance in survived-white spot syndrome virus challenged giant tiger shrimp, Penaeus monodon. PeerJ 2019; 7:e8107. [PMID: 31875142 PMCID: PMC6927347 DOI: 10.7717/peerj.8107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022] Open
Abstract
The emergence of diseases such as white spot disease has become a threat to Penaeus monodon cultivation. Although there have been a few studies utilizing RNA-Seq, the cellular processes of host-virus interaction in this species remain mostly anonymous. In the present study, P. monodon was challenged with WSSV by intramuscular injection and survived for 12 days. The effect of the host gene expression by WSSV infection in the haemocytes, hepatopancreas and muscle of P. monodon was studied using Illumina HiSeq 2000. The RNA-Seq of cDNA libraries was developed from surviving WSSV-challenged shrimp as well as from normal healthy shrimp as control. A comparison of the transcriptome data of the two groups showed 2,644 host genes to be significantly up-regulated and 2,194 genes significantly down-regulated as a result of the infection with WSSV. Among the differentially expressed genes, our study discovered HMGB, TNFSF and c-Jun in P. monodon as new potential candidate genes for further investigation for the development of potential disease resistance markers. Our study also provided significant data on the differential expression of genes in the survived WSSV infected P. monodon that will help to improve understanding of host-virus interactions in this species.
Collapse
Affiliation(s)
- Farhana Mohd Ghani
- Department of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Department of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Wang Y, Yang Y, Chen Q, Zhai H, Xie Z, Ke F. PfHMGB2 protects yellow catfish (Pelteobagrus fulvidraco) from bacterial infection by promoting phagocytosis and proliferation of PBL. FISH & SHELLFISH IMMUNOLOGY 2019; 93:567-574. [PMID: 31394161 DOI: 10.1016/j.fsi.2019.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
HMGB2, a member of the high mobility group box family, plays an important role in host immune responses. However, the mechanism of action of HMGB2 is not well understood. Herein, a homologue from yellow catfish (Pelteobagrus fulvidraco) was cloned and named PfHMGB2. The deduced amino acid sequence of PfHMGB2 possessed a typical tripartite structure (two DNA binding boxes and an acid tail) and shared 90% identity with the predicted HMGB2 from I. punctatus. The mRNA of PfHMGB2 was widely distributed in all 11 tested tissues in healthy fish bodies and was significantly induced in the liver and head kidney when yellow catfish were injected with inactivated Aeromonas hydrophila. Consistently, PfHMGB2 mRNA could also be induced in yellow catfish peripheral blood leucocytes (PBL) by lipopolysaccharide. The recombinant PfHMGB2 protein was purified from E. coli BL21 (DE3):pET-28a/PfHMGB2 and showed DNA-binding affinity. Moreover, rPfHMGB2 improved the phagocytosis and proliferation activity and upregulated the mRNA expression of the pro-inflammatory cytokine TNFα in yellow catfish PBL. These results indicated that PfHMGB2 could protect yellow catfish from pathogen infection by activating PBL.
Collapse
Affiliation(s)
- Yun Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Hubei Province, Wuhan, 430056, China; Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China.
| | - Yanyan Yang
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China
| | - Qianying Chen
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China
| | - Hanfei Zhai
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China
| | - Zhaohui Xie
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China
| | - Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
11
|
Song Y, Nahrgang J, Tollefsen KE. Transcriptomic analysis reveals dose-dependent modes of action of benzo(a)pyrene in polar cod (Boreogadus saida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:176-189. [PMID: 30408666 DOI: 10.1016/j.scitotenv.2018.10.261] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
Polar cod (Boreogadus saida) has been used as a model Arctic species for hazard assessment of environmental stressors such as polycyclic aromatic hydrocarbons (PAHs). However, most of the PAH studies using polar cod rely on targeted biomarker-based analysis thus may not adequately address the complexity of the toxic mechanisms of the stressors. The present study was performed to develop a broad-content transcriptomic platform for polar cod and apply it for understanding the toxic mechanisms of a model PAH, benzo(a)pyrene (BaP). Hepatic transcriptional analysis using a combination of high-density polar cod oligonucleotide microarray and quantitative real-time RT-PCR was conducted to characterize the stress responses in polar cod after 14d repeated dietary exposure to 0.4 (Low) and 20.3 μg/g fish/feeding (High) BaP doses. Bile metabolic analysis was performed to identify the storage of a key BaP hepatic biotransformation product, 3-hydroxybenzo(a)pyrene (3-OH-BaP). The results clearly showed that 3-OH-BaP was detected in the bile of polar cod after both Low and High BaP exposure. Dose-dependent hepatic stress responses were identified, with Low BaP suppressing genes involved in the defense mechanisms and High BaP inducing genes associated with these pathways. The results suggested that activation of the aryl hydrocarbon receptor signaling, induction of oxidative stress, DNA damage and apoptosis were the common modes of action (MoA) of BaP between polar cod or other vertebrates, whereas induction of protein degradation and disturbance of mitochondrial functions were proposed as novel MoAs. Furthermore, conceptual toxicity pathways were proposed for BaP-mediated effects in Arctic fish. The present study has for the first time reported a transcriptome-wide analysis using a polar cod-specific microarray and suggested novel MoAs of BaP. The analytical tools, bioinformatics solutions and mechanistic knowledge generated by this study may facilitate mechanistically-based hazard assessment of environmental stressors in the Arctic using this important fish as a model species.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway.
| | - Jasmine Nahrgang
- UiT The Arctic University of Norway, Faculty of Biosciences, Fisheries and Economics, Dept. of Arctic and Marine Biology, N-9037 Tromsø, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, Dept. for Environmental Sciences, Post box 5003, N-1432 Ås, Norway.
| |
Collapse
|
12
|
Overexpression of miR-758 inhibited proliferation, migration, invasion, and promoted apoptosis of non-small cell lung cancer cells by negatively regulating HMGB. Biosci Rep 2019; 39:BSR20180855. [PMID: 30446524 PMCID: PMC6340954 DOI: 10.1042/bsr20180855] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/04/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most fatal types of cancer with significant mortality and morbidity worldwide. MicroRNAs (miRs) have been confirmed to have positive functions in NSCLC. In the present study, we try to explore the role of miR-758 in proliferation, migration, invasion, and apoptosis of NSCLC cells by regulating high-mobility group box (HMGB) 3 (HMGB3.) NSCLC and adjacent tissues were collected. Reverse transcription quantitative PCR (RT-qPCR) was employed to detect expression of miR-758 and HMGB3 in NSCLC and adjacent tissues, in BEAS-2B cells and NSCLC cell lines. The targetted relationship between miR-758 and HMGB3 was identified by dual luciferase reporter gene assay. The effects of miR-758 on proliferation, migration, invasion, cell cycle, and apoptosis of A549 cells. MiR-758 expression was lower in NSCLC tissues, which was opposite to HMGB3 expression. The results also demonstrated that miR-758 can target HMGB3. The cells transfected with miR-758 mimic had decreased HMGB3 expression, proliferation, migration, and invasion, with more arrested cells in G1 phase and increased apoptosis. Our results supported that the overexpression of miR-758 inhibits proliferation, migration, and invasion, and promotes apoptosis of NSCLC cells by negative regulating HMGB2. The present study may provide a novel target for NSCLC treatment.
Collapse
|
13
|
Wang GH, Wang JJ, Yue B, Du X, Du HH, Zhang M, Hu YH. High mobility group box 2 of black rockfish Sebastes schlegelii: Gene cloning, immunoregulatory properties and antibacterial effect. FISH & SHELLFISH IMMUNOLOGY 2019; 84:719-725. [PMID: 30393172 DOI: 10.1016/j.fsi.2018.10.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
High-mobility group box 2 (HMGB2) is a non-histone chromosomal protein that involved diverse functions such as transcriptional regulation and innate immune responses in mammalian. In teleost, very limited studies on HMGB2 proteins have been documented. Black rockfish (Sebastes schlegelii) is an economic fish species and cultured worldwide. However, the study of black rockfish about immunology is very scarce. In the present study, a HMGB2 homologue gene (SsHMGB2) was identified and characterized in black rockfish. The open reading frame of SsHMGB2 is 648 bp, and the deduced amino acid sequence of SsHMGB2 shares 74.4%-91.2% overall sequence identities with the HMGB2 proteins of several fish species. In silico analysis identified several conserved features, including two basic HMG boxes and an acidic C-terminal tail composed of 24 Asp/Glu residues. Expression of SsHMGB2 occurred in multiple tissues and was upregulated during pathogens infection. Recombinant SsHMGB2 (rSsHMGB2) exhibited apparent binding activities against DNA. In vivo studies showed that the expressions of multiple immune-related genes in head kidney were significantly enhanced when black rockfish were treated with rSsHMGB2. Furthermore, rSsHMGB2 reduced pathogen dissemination and replication in fish kidney and spleen. Taken together, these results suggest that SsHMGB2 possesses apparent immunoregulatory properties and played a role in fighting bacterial infection.
Collapse
Affiliation(s)
- Guang-Hua Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing-Jing Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bin Yue
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Du
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - He-He Du
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yong-Hua Hu
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
14
|
Lenka SS, Paichha M, Basu M, Samanta M. LrHMGB1 Shares Structural Similarities with Human HMGB1, and Its Expression Is Induced in Bacterial Infection, Antiviral Vaccination, and Pathogen-Associated Molecular Patterns Stimulation. DNA Cell Biol 2018; 37:708-723. [DOI: 10.1089/dna.2018.4221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
| | - Mahismita Paichha
- Immunology Laboratory, Fish Health Management Division, Indian Council of Agricultural Research-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Madhubanti Basu
- Immunology Laboratory, Fish Health Management Division, Indian Council of Agricultural Research-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Mrinal Samanta
- Immunology Laboratory, Fish Health Management Division, Indian Council of Agricultural Research-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| |
Collapse
|
15
|
Shi YZ, Chen JC, Chen YY, Kuo YH, Li HF. Endogenous molecules released by haemocytes receiving Sargassum oligocystum extract lead to downstream activation and synergize innate immunity in white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2018; 76:1-12. [PMID: 29471059 DOI: 10.1016/j.fsi.2018.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
White shrimp Litopenaeus vannamei haemocytes receiving immunostimulating Sargassum oligocystum extract (SE) caused necrosis in haemocyte cells, which released endogenous EM-SE molecules. This study examined the immune response of white shrimp L. vannamei receiving SE and EM-SE in vitro and in vivo. Shrimp haemocytes receiving SE exhibited degranulation, changes in cell size and cell viability, necrosis and a release of EM-SE. Shrimp haemocytes receiving SE, EM-SE, and the SE + EM-SE mixture (SE + EM-SE) increased their phenoloxidase (PO) activity which was significantly higher in shrimp haemocytes receiving the SE + EM-SE mixture. Furthermore, shrimp haemocytes receiving EM-SE showed degranulation and changes in cell size and cell viability. Shrimp receiving SE, EM-SE, and SE + EM-SE all increased their immune parameters, phagocytic activity, clearance efficiency and resistance to Vibrio alginolyticus, being significantly higher in shrimp receiving SE + EM-SE. Meanwhile, the recombinant lipopolysaccharide- and β-1,3-glucan binding protein of L. vannamei (rLvLGBP) was bound to SE, EM-SE, and SE + EM-SE. We conclude that in shrimp haemocytes receiving a non-self molecule, SE in dying cells released EM-SE which led to downstream activation and synergization of the immune response. This study demonstrated that the innate immunity of shrimp was elicited and enhanced by a mixture of endogenous molecules and exogenous substances (or immunostimulants).
Collapse
Affiliation(s)
- Yin-Ze Shi
- Department of Aquaculture, College of Life Sciences, Center of the Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Jiann-Chu Chen
- Department of Aquaculture, College of Life Sciences, Center of the Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC.
| | - Yu-Yuan Chen
- Department of Aquaculture, College of Life Sciences, Center of the Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Yi-Hsuan Kuo
- Department of Aquaculture, College of Life Sciences, Center of the Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Hui-Fang Li
- Department of Aquaculture, College of Life Sciences, Center of the Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| |
Collapse
|
16
|
Luo J, Chen J, Li H, Yang Y, Yun H, Yang S, Mao X. LncRNA UCA1 promotes the invasion and EMT of bladder cancer cells by regulating the miR-143/HMGB1 pathway. Oncol Lett 2017; 14:5556-5562. [PMID: 29113184 DOI: 10.3892/ol.2017.6886] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
The long non-coding RNA (lncRNA) urothelial carcinoma associated 1 (UCA1) is an oncogenic lncRNA in bladder cancer, and its upregulation is associated with enhanced cell invasion. However, the underlying mechanism remains to be elucidated. The present study demonstrated that UCA1 was positively associated with cell invasion ability and promoted epithelial-mesenchymal transition (EMT) of bladder cancer cells by inducing high mobility group box 1 (HMGB1). Furthermore, bioinformatics and luciferase reporter assays demonstrated binding sites of the tumor suppressive miR-143 within UCA1 and the 3'untranslated region of HMGB1. UCA1 negatively regulated miR-143 expression in a dose-dependent manner in bladder cancer cells. In addition, UCA1 and HMGB1 were upregulated and miR-143 was downregulated in bladder cancer specimens. Overall, the data suggested that UCA1 may promote the invasion and EMT of bladder cancer cells by regulating the miR-143/HMGB1 pathway, which exhibits an important regulatory role in the pathology of bladder cancer.
Collapse
Affiliation(s)
- Junhua Luo
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Jing Chen
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Hang Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Yu Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Haichao Yun
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Xiangming Mao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
17
|
Zhang R, Li Y, Wang Z, Chen L, Dong X, Nie X. Interference with HMGB1 increases the sensitivity to chemotherapy drugs by inhibiting HMGB1-mediated cell autophagy and inducing cell apoptosis. Tumour Biol 2015; 36:8585-92. [DOI: 10.1007/s13277-015-3617-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/26/2015] [Indexed: 11/30/2022] Open
|
18
|
Insights into the antiviral immunity against grass carp (Ctenopharyngodon idella) reovirus (GCRV) in grass carp. J Immunol Res 2015; 2015:670437. [PMID: 25759845 PMCID: PMC4337036 DOI: 10.1155/2015/670437] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022] Open
Abstract
Global fish production from aquaculture has rapidly grown over the past decades, and grass carp shares the largest portion. However, hemorrhagic disease caused by grass carp reovirus (GCRV) results in tremendous loss of grass carp (Ctenopharyngodon idella) industry. During the past years, development of molecular biology and cellular biology technologies has promoted significant advances in the understanding of the pathogen and the immune system. Immunoprophylaxis based on stimulation of the immune system of fish has also got some achievements. In this review, authors summarize the recent progresses in basic researches on GCRV; viral nucleic acid sensors, high-mobility group box proteins (HMGBs); pattern recognition receptors (PRRs), Toll-like receptors (TLRs) and retinoic acid inducible gene I- (RIG-I-) like receptors (RLRs); antiviral immune responses induced by PRRs-mediated signaling cascades of type I interferon (IFN-I) and IFN-stimulated genes (ISGs) activation. The present review also notices the potential applications of molecule genetic markers. Additionally, authors discuss the current preventive and therapeutic strategies (vaccines, RNAi, and prevention medicine) and highlight the importance of innate immunity in long term control for grass carp hemorrhagic disease.
Collapse
|
19
|
Chen YY, Chen JC, Lin YC, Kitikiew S, Li HF, Bai JC, Tseng KC, Lin BW, Liu PC, Shi YZ, Kuo YH, Chang YH. Endogenous molecules induced by a pathogen-associated molecular pattern (PAMP) elicit innate immunity in shrimp. PLoS One 2014; 9:e115232. [PMID: 25517999 PMCID: PMC4269435 DOI: 10.1371/journal.pone.0115232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022] Open
Abstract
Invertebrates rely on an innate immune system to combat invading pathogens. The system is initiated in the presence of cell wall components from microbes like lipopolysaccharide (LPS), β-1,3-glucan (βG) and peptidoglycan (PG), altogether known as pathogen-associated molecular patterns (PAMPs), via a recognition of pattern recognition protein (PRP) or receptor (PRR) through complicated reactions. We show herein that shrimp hemocytes incubated with LPS, βG, and PG caused necrosis and released endogenous molecules (EMs), namely EM-L, EM-β, and EM-P, and found that shrimp hemocytes incubated with EM-L, EM-β, and EM-P caused changes in cell viability, degranulation and necrosis of hemocytes, and increased phenoloxidase (PO) activity and respiratory burst (RB) indicating activation of immunity in vitro. We found that shrimp receiving EM-L, EM-β, and EM-P had increases in hemocyte count and other immune parameters as well as higher phagocytic activity toward a Vibrio pathogen, and found that shrimp receiving EM-L had increases in proliferation cell ratio and mitotic index of hematopoietic tissues (HPTs). We identified proteins of EMs deduced from SDS-PAGE and LC-ESI-MS/MS analyses. EM-L and EM-P contained damage-associated molecular patterns (DAMPs) including HMGBa, HMGBb, histone 2A (H2A), H2B, and H4, and other proteins including proPO, Rab 7 GPTase, and Rab 11 GPTase, which were not observed in controls (EM-C, hemocytes incubated in shrimp salt solution). We concluded that EMs induced by PAMPs contain DAMPs and other immune molecules, and they could elicit innate immunity in shrimp. Further research is needed to identify which individual molecule or combined molecules of EMs cause the results, and determine the mechanism of action in innate immunity.
Collapse
Affiliation(s)
- Yu-Yuan Chen
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Jiann-Chu Chen
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
- * E-mail:
| | - Yong-Chin Lin
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Suwaree Kitikiew
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Hui-Fang Li
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Jia-Chin Bai
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Kuei-Chi Tseng
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Bo-Wei Lin
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Po-Chun Liu
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Yin-Ze Shi
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Yi-Hsuan Kuo
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| | - Yu-Hsuan Chang
- The Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
| |
Collapse
|
20
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
21
|
Kanwal Z, Wiegertjes GF, Veneman WJ, Meijer AH, Spaink HP. Comparative studies of Toll-like receptor signalling using zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:35-52. [PMID: 24560981 DOI: 10.1016/j.dci.2014.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Zebrafish model systems for infectious disease are increasingly used for the functional analysis of molecular pattern recognition processes. These studies benefit from the high conservation level of all innate immune factors in vertebrates. Zebrafish studies are strategically well positioned for this because of the ease of comparisons with studies in other fish species of which the immune system also has been intensively studied, but that are currently still less amendable to detailed genetic or microscopic studies. In this paper we focus on Toll-like receptor (TLR) signalling factors, which currently are the best characterized in mammalian systems. We review the knowledge on TLR signalling in the context of recent advances in zebrafish studies and discuss possibilities for future approaches that can complement studies in cell cultures and rodent models. A focus in these comparisons is the role of negative control mechanisms in immune responses that appear very important in a whole organism to keep adverse systemic responses in check. We also pay much attention to comparisons with studies in common carp that is highly related to zebrafish and that because of its large body mass can complement immune studies in zebrafish.
Collapse
Affiliation(s)
- Zakia Kanwal
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Wouter J Veneman
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Annemarie H Meijer
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman P Spaink
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
22
|
Rao Y, Su J, Yang C, Yan N, Chen X, Feng X. Dynamic localization and the associated translocation mechanism of HMGBs in response to GCRV challenge in CIK cells. Cell Mol Immunol 2014; 12:342-53. [PMID: 25042634 DOI: 10.1038/cmi.2014.55] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/23/2014] [Accepted: 06/08/2014] [Indexed: 01/04/2023] Open
Abstract
High-mobility group box (HMGB) proteins, a family of chromatin-associated nuclear proteins, play amazingly multifaceted roles in the immune system of mammals. Thus far, little is known about the nucleocytoplasmic distribution of HMGBs in teleosts. The present study systematically investigated the dynamic localization of all six HMGB proteins in Ctenopharyngodon idella kidney (CIK) cells. Under basal conditions, all HMGBs exclusively localized to the nucleus. Grass carp reovirus (GCRV), polyinosinic-polycytidylic (poly(I∶C)) potassium salt and lipopolysaccharide (LPS) challenge evoked the nuclear export of HMGBs to various degrees: GCRV challenge induced the highest nuclear export of CiHMGB2b, and poly(I∶C) and LPS evoked the highest nucleocytoplasmic shuttling of CiHMGB1b. Overall, the nucleocytoplasmic shuttling of CiHMGB2a and CiHMGB3b was rarely induced by these challenges. Dynamic imaging uncovered that the nucleocytoplasmic GCRV-induced relocation of CiHMGB2b occurred in cells undergoing karyotheca rupture, apoptosis or proliferation. Western blot analyses were used to examine HMGB-EGFP fusion proteins in whole cell lysates, cytosol, nuclear fractions and culture medium. Further investigation demonstrated the nuclear retention of N-terminal HMG-boxes and the nucleocytoplasmic distribution of the C-terminal acidic tails. Comparative analyses of the dynamic relocation of full-length, truncated or chimeric HMGBs confirmed that the intramolecular interaction between HMG-boxes and C-tail domains mediated the nucleocytoplasmic translocation of HMGBs. These results not only provide an overall understanding of the subcellular localization of HMGBs, but also reveal the induction mechanism of the nucleocytoplasmic translocation of HMGBs by GCRV challenge, which lays a foundation for further studies on the interactions among pathogens, HMGBs and pattern recognition receptors in the innate immunity of teleosts.
Collapse
|
23
|
Yue P, Rong X, Zhuang X, Sha HJ, Li JM, Xin L, Li QW. Cloning and expression analysis of a novel high-mobility group box 2 homologue from Lampetra japonica. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:625-634. [PMID: 24158500 PMCID: PMC3948571 DOI: 10.1007/s10695-013-9871-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
High-mobility group box 2 (HMGB2) is a nonhistone architectural protein that plays important roles in many biological processes. In this study, we cloned a homologue of the HMGB2 from the lymphocyte-like cells of Lampetra japonica (L. japonica). Sequence analysis reveals that L. japonica HMGB2 contains two highly conserved motifs and shares more than 70 % identity with the homologues from other vertebrate species. Subsequently, Lj-HMGB2 was subcloned into the pET-28a(+) and pIRES2 AcGFP1-Nuc vector and expressed in Rosetta blue (DE3) and Hela cell lines, respectively. The recombinant L. japonica HMGB2 (rLj-HMGB2) with apparent molecular mass of 22 kDa was further purified by His-Bind affinity chromatography. Real-time quantitative PCR indicates that the expression level of Lj-HMGB2 was particularly up-regulated in intestines after challenged with lipopolysaccharide, while up-regulated in lymphocyte-like cells and heart after challenged with concanavalin A in vivo. In addition, rLj-HMGB2 could induce the generation of proinflammatory mediators in the activated human acute monocytic leukemia cell line (THP1), which suggested that Lj-HMGB2 may participate in the immune response of the lampreys.
Collapse
Affiliation(s)
- Pang Yue
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Xiao Rong
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Xue Zhuang
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Huang Jin Sha
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Jin Min Li
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Liu Xin
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Qing Wei Li
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| |
Collapse
|
24
|
Long H, Chen C, Zhang J, Sun L. Antibacterial and antiviral properties of tongue sole (Cynoglossus semilaevis) high mobility group B2 protein are largely independent on the acidic C-terminal domain. FISH & SHELLFISH IMMUNOLOGY 2014; 37:66-74. [PMID: 24468324 DOI: 10.1016/j.fsi.2014.01.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/06/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
High mobility group box (HMGB) proteins are known to be involved in diverse functions in mammalian cells. In teleost, very limited studies on HMGB proteins have been documented. In this study, we reported identification of a HMGB homologue (named CsHMGB2) from tongue sole (Cynoglossus semilaevis) and examined its biological property. CsHMGB2 is 245 residues in length and contains two basic HMG boxes and an acidic C-terminal tail composed of 23 Asp/Glu residues. Quantitative real time RT-PCR (qRT-PCR) analysis showed that CsHMGB2 expression occurred in multiple tissues and was upregulated by bacterial and viral infection in a time-dependent manner. In vitro studies showed that when tongue sole peripheral blood leukocytes were treated with recombinant CsHMGB2 (rCsHMGB2) and the mutant rCsHMGB2M, which bears a deletion of the C-terminal acidic region, significant and comparable increases in cellular resistance against bacterial infection were observed. qRT-PCR detected enhanced expression of proinflammatory cytokines and chemokines in rCsHMGB2-treated cells. In vivo studies showed that when tongues sole were administered with rCsHMGB2 or rCsHMGB2M before being subjected to bacterial and viral infection, the pathogen loads in the spleen and kidney of the fish were significantly reduced. Taken together, these results suggest that CsHMGB2 possesses immunoregulatory properties that promote resistance against bacterial and viral infection in a manner that is largely independent on the highly conserved C-terminal acidic domain.
Collapse
Affiliation(s)
- Hao Long
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Chen
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Li Sun
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
25
|
Yang C, Chen L, Su J, Feng X, Rao Y. Two novel homologs of high mobility group box 3 gene in grass carp (Ctenopharyngodon idella): potential roles in innate immune responses. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1501-1510. [PMID: 23994280 DOI: 10.1016/j.fsi.2013.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
High mobility group box 3 (HMGB3) protein is a universal sentinel in the activation of innate antiviral immune responses in mammalian cells of limited tissues. However, the underlying immune functions of HMGB3 responding to viruses and viral/bacterial pathogen-associated molecular patterns (PAMPs) are still unknown in teleosts. In the present study, two novel homologs of grass carp (Ctenopharyngodon idella) HMGB3 (designated as CiHMGB3a and CiHMGB3b) were identified and characterized. Quantitative RT-PCR analysis showed that CiHMGB3a and CiHMGB3b were widely expressed in tissues. The mRNA expressions of CiHMGB3a and CiHMGB3b were induced by grass carp reovirus (GCRV) challenges both in tissues and in cells, and CiHMGB3a played a more active role in antiviral immune responses. Viral PAMP stimulation evidenced that CiHMGB3a and CiHMGB3b mediated immune responses in CIK (C. idella kidney) cells. Interestingly, CiHMGB3a had little impact on bacterial PAMPs (LPS and PGN), whereas CiHMGB3b was critical responding to bacterial PAMPs stimulation. In overexpressions of CiHMGB3a and CiHMGB3b cells, the transcriptional levels of CiHMGB3a, CiHMGB3b, CiTRIF, CiIPS-1, CiIFN-I and CiMx1 were remarkably induced. In addition, CiMyD88 had vital impact on antiviral signaling channels in overexpression of CiHMGB3b cells. Furthermore, 96-well plate staining assay, virus titer test and GCRV quantitative analysis collectively indicated CiHMGB3a and CiHMGB3b exhibited substantial antiviral activity. These results suggest that CiHMGB3a and CiHMGB3b exert important functions in antiviral immune responses by TLRs and RLRs signaling pathways. Taken together, current study provides the first evidence that HMGB3 participates in broad antiviral and antibacterial immune responses in teleosts.
Collapse
Affiliation(s)
- Chunrong Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | | | | | | | | |
Collapse
|
26
|
Rao Y, Su J, Yang C, Peng L, Feng X, Li Q. Characterizations of two grass carp Ctenopharyngodon idella HMGB2 genes and potential roles in innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:164-177. [PMID: 23756189 DOI: 10.1016/j.dci.2013.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/02/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
High-mobility group box 2 (HMGB2) protein is a chromatin-associated nonhistone protein, involved in transcriptional regulation and nucleic-acid-mediated innate immune responses in mammalian. However, the function of piscine HMGB2 in innate immune responses is still unknown. In the present study, two HMGB2 homologue genes (CiHMGB2a, CiHMGB2b) were identified and characterized in grass carp (Ctenopharyngodon idella). Both CiHMGB2a and CiHMGB2b genes encode proteins with 213 amino acids, sharing 71.4% identities and containing two basic HMG boxes and an acidic tail. The deduced protein sequences showed the most identities to HMGB2a (93%) and HMGB2b (86.4%) of zebrafish (Danio rerio), respectively. Quantitative real-time RT-PCR (qRT-PCR) analysis showed that CiHMGB2a and CiHMGB2b were constitutively expressed in all the 15 tested tissues. Post grass carp reovirus (GCRV) infection, mRNA levels of CiHMGB2a and CiHMGB2b were strongly up-regulated in spleen and head kidney and mildly modulated in C. idella kidney (CIK) cells. Meanwhile, mRNA expressions of CiHMGB2a and CiHMGB2b were significantly regulated by viral pathogen associated molecular patterns (PAMPs) polyinosinic-polycytidylic potassium salt (poly(I:C)) and bacterial PAMPs lipopolysaccharide (LPS), peptidoglycan (PGN) challenge in CIK cells. In CiHMGB2a and CiHMGB2b over-expression cells, expressions of CiHMGB2a and CiHMGB2b facilitated each other; transcription levels of CiTRIF, CiMyD88, CiIPS-1 and CiMx1 were remarkably enhanced, whereas CiIFN-I was inhibited, compared with those in cells transfected with pCMV (control plasmid); after GCRV challenge, all those tested genes were up-regulated with divergent expression profiles. Antiviral activities of CiHMGB2a and CiHMGB2b were manifested by the delayed appearance of cytopathic effect (CPE) and inhibition of GCRV yield. All those results demonstrate that CiHMGB2a and CiHMGB2b not only mediate antiviral immune responses but also involve in responding to viral/bacterial PAMPs challenge, which provides novel insights into the essential role of HMGB2 in innate immunity.
Collapse
Affiliation(s)
- Youliang Rao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China
| | | | | | | | | | | |
Collapse
|
27
|
Deep mRNA sequencing analysis to capture the transcriptome landscape of zebrafish embryos and larvae. PLoS One 2013; 8:e64058. [PMID: 23700457 PMCID: PMC3659048 DOI: 10.1371/journal.pone.0064058] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/09/2013] [Indexed: 11/19/2022] Open
Abstract
Transcriptome analysis is a powerful tool to obtain large amount genome-scale gene expression profiles. Despite its extensive usage to diverse biological problems in the last decade, transcriptomic researches approaching the zebrafish embryonic development have been very limited. Several recent studies have made great progress in this direction, yet the large gap still exists, especially regarding to the transcriptome dynamics of embryonic stages from early gastrulation onwards. Here, we present a comprehensive analysis about the transcriptomes of 9 different stages covering 7 major periods (cleavage, blastula, gastrula, segmentation, pharyngula, hatching and early larval stage) in zebrafish development, by recruiting the RNA-sequencing technology. We detected the expression for at least 24,065 genes in at least one of the 9 stages. We identified 16,130 genes that were significantly differentially expressed between stages and were subsequently classified into six clusters. Each revealed gene cluster had distinct expression patterns and characteristic functional pathways, providing a framework for the understanding of the developmental transcriptome dynamics. Over 4000 genes were identified as preferentially expressed in one of the stages, which could be of high relevance to stage-specific developmental and molecular events. Among the 68 transcription factor families active during development, most had enhanced average expression levels and thus might be crucial for embryogenesis, whereas the inactivation of the other families was likely required by the activation of the zygotic genome. We discussed our RNA-seq data together with previous findings about the Wnt signaling pathway and some other genes with known functions, to show how our data could be used to advance our understanding about these developmental functional elements. Our study provides ample information for further study about the molecular and cellular mechanisms underlying vertebrate development.
Collapse
|
28
|
Dong Y, Gu Y, Huan Y, Wang Y, Liu Y, Liu M, Ding F, Gu X, Wang Y. HMGB1 protein does not mediate the inflammatory response in spontaneous spinal cord regeneration: a hint for CNS regeneration. J Biol Chem 2013; 288:18204-18. [PMID: 23649623 DOI: 10.1074/jbc.m113.463810] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Uncontrolled, excessive inflammation contributes to the secondary tissue damage of traumatic spinal cord, and HMGB1 is highlighted for initiation of a vicious self-propagating inflammatory circle by release from necrotic cells or immune cells. Several regenerative-competent vertebrates have evolved to circumvent the second damages during the spontaneous spinal cord regeneration with an unknown HMGB1 regulatory mechanism. By genomic surveys, we have revealed that two paralogs of HMGB1 are broadly retained from fish in the phylogeny. However, their spatial-temporal expression and effects, as shown in lowest amniote gecko, were tightly controlled in order that limited inflammation was produced in spontaneous regeneration. Two paralogs from gecko HMGB1 (gHMGB1) yielded distinct injury and infectious responses, with gHMGB1b significantly up-regulated in the injured cord. The intracellular gHMGB1b induced less release of inflammatory cytokines than gHMGB1a in macrophages, and the effects could be shifted by exchanging one amino acid in the inflammatory domain. Both intracellular proteins were able to mediate neuronal programmed apoptosis, which has been indicated to produce negligible inflammatory responses. In vivo studies demonstrated that the extracellular proteins could not trigger a cascade of the inflammatory cytokines in the injured spinal cord. Signal transduction analysis found that gHMGB1 proteins could not bind with cell surface receptors TLR2 and TLR4 to activate inflammatory signaling pathway. However, they were able to interact with the receptor for advanced glycation end products to potentiate oligodendrocyte migration by activation of both NFκB and Rac1/Cdc42 signaling. Our results reveal that HMGB1 does not mediate the inflammatory response in spontaneous spinal cord regeneration, but it promotes CNS regeneration.
Collapse
Affiliation(s)
- Yingying Dong
- Key Laboratory of Neuroregeneration, Nantong University, Nantong 226007, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yang C, Peng L, Su J. Two HMGB1 genes from grass carp Ctenopharyngodon idella mediate immune responses to viral/bacterial PAMPs and GCRV challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:133-146. [PMID: 23228458 DOI: 10.1016/j.dci.2012.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 06/01/2023]
Abstract
High mobility group box 1 (HMGB1) is a nuclear weapon in the immune arsenal and a master regulator of innate immunity, at the crossroads between innate and adaptive immunity. To clarify the immune characterizations of HMGB1 in fishes, two co-orthologs of HMGB1 (CiHMGB1a and CiHMGB1b) were identified in grass carp Ctenopharyngodon idella by local EST database searching and RACE techniques. mRNA expressions of the two HMGB1 genes are widespread in fifteen tissues investigated. The transcripts of CiHMGB1a and CiHMGB1b were significantly up-regulated and reached peak at 24h post GCRV challenge in spleen and head kidney tissues (P<0.05). The modulations are slow post-bacterial PAMP stimulations by contrast with those after viral PAMP or GCRV challenge. They are inhibited by bacterial PAMPs, but are enhanced by viral PAMP or virus. mRNA expression of CiHMGB1a is high and strongly modulated by nucleic acids and transcription of CiHMGB1b is low and mildly regulated by nucleic acids and capsids of GCRV. The over-expression vectors were constructed and transfected into C. idella kidney cell line to obtain stably expressing recombinant proteins. In HMGB1 over-expressed cells, mRNA expressions of IPS-1, MyD88 and Mx1 were down-regulated, whereas TRIF was found to be up-regulated and IFN-I showed no change in its expression. After GCRV challenge, the transcripts of IPS-1, MyD88 and Mx1 were up-regulated, while IFN-I showed down-regulation, and TRIF showed up-regulation after an initial phase of decline. The titer assay demonstrated no antiviral activity of HMGB1s. The results indicated mRNA expressions of HMGB1a and HMGB1b are enhanced by GCRV or viral PAMP, and are inhibited by bacterial PAMPs; HMGB1a and HMGB1b collaborate with each other and play important roles in modulating the innate immune responses, although without direct antiviral effect; the immune network triggered by HMGB1 work together in concert to maintain homeostasis.
Collapse
Affiliation(s)
- Chunrong Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | | | | |
Collapse
|
30
|
Cao JM, Li SQ, Zhang HW, Shi DL. High mobility group B proteins regulate mesoderm formation and dorsoventral patterning during zebrafish and Xenopus early development. Mech Dev 2012; 129:263-74. [DOI: 10.1016/j.mod.2012.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|
31
|
Zhao L, Hu YH, Sun JS, Sun L. The high mobility group box 1 protein of Sciaenops ocellatus is a secreted cytokine that stimulates macrophage activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1052-1058. [PMID: 21527276 DOI: 10.1016/j.dci.2011.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/19/2011] [Accepted: 03/19/2011] [Indexed: 05/30/2023]
Abstract
High mobility group box 1 protein (HMGB1) is a chromatin-associated nonhistone protein that is involved in nucleosome formation and transcriptional regulation. In addition, HMGB1 is also known as an extracellular cytokine that triggers inflammation and immune responses. HMGB1-like sequences have been identified in a number of fish species, however, the function of piscine HMGB1 remains uninvestigated. In this study, we reported the identification and analysis of SoHMGB1, an HMGB1 homologue from red drum (Sciaenops ocellatus). SoHMGB1 is 206 residues in length and contains two basic HMG boxes and a highly acidic C-terminal domain. SoHMGB1 shares 71-87% overall sequence identities with the HMGB1 counterparts from human, rat, and several fish species. Quantitative real time RT-PCR analysis showed that constitutive SoHMGB1 expression was detected in various tissues, with the lowest and highest levels found in kidney and muscle respectively. Bacterial challenge upregulated SoHMGB1 expression in head kidney (HK) and HK macrophages and induced extracellular secretion of SoHMGB1 by the activated macrophages. Recombinant SoHMGB1 (rSoHMGB1) purified from yeast exhibited no direct antimicrobial effect but was significantly stimulatory on the proliferation, activation, and bactericidal activity of HK macrophages. Taken together, these results indicate for the first time that a fish HMGB1, SoHMGB1, can function as a secreted cytokine in the event of bacterial infection and promote innate defense through the activation of macrophages.
Collapse
Affiliation(s)
- Lu Zhao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | | | | | | |
Collapse
|