1
|
Feng Y, Zhong ZW, Xu Y, Zhang ZY, Ao LL, Yang Z, Wang YL, Jiang YH. Characterization of the transcription factor Sox3 regulating the gonadal development of pearlscale angelfish (Centropyge vrolikii). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1193-1207. [PMID: 35963922 DOI: 10.1007/s10695-022-01110-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
As a member of the Sox gene family, Sox3 plays a vital role in gonadal development and gametogenesis. Nevertheless, the exact expression pattern of this gene in fish is still unknown. Here, we identified the Sox3 gene of Centropyge vrolikii, namely, Cv-Sox3. The Cv-Sox3 mRNA expression in the ovary and testis was detected by reverse transcription-polymerase chain reaction (RT-PCR) analysis, and the mRNA expression level of Cv-Sox3 in the ovary in the resting stage was significantly higher than that in other tissues. The phylogenetic tree and alignment of multiple sequences were constructed to analyze the evolutionary relationships of Cv-Sox3. Cv-Sox3 was relatively conserved in the evolution of teleost fish, indicating the importance and similarity of its function. The in situ hybridization results demonstrate that Cv-Sox3 was present in the follicle cells and cytoplasm of oocytes in the ovary of different stages, and the positive signals occurred in germ cells of the testis. After interfering with Cv-Sox3, the growth rate of ovarian cells in culture became slow, and the expression of ovary-bias-related genes Cyp19a and Foxl2 significantly increased. Meanwhile, the expression of testis-bias-related genes Dmrt1, Sox9, Cyp11a, Amh, and Sox8 significantly decreased. These results suggest that Cv-Sox3 gene might be expressed in the germ cells of male and female gonads during gonadal development. This study provides a precise expression pattern of Cv-Sox3 and demonstrates that Cv-Sox3 might play a significant role in the reproductive regulation of C. vrolikii. In this study, Sox3 of C. vrolikii (Cv-Sox3) was cloned to understand the expression pattern in the gonadal development, which is expressed in germ cells, involved in the process of gonadal development. The results demonstrated that Cv-Sox3 may play a significant role in the reproductive regulation of C. vrolikii.
Collapse
Affiliation(s)
- Yan Feng
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Zhao-Wei Zhong
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Yan Xu
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Ze-Yu Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, Fujian, China
| | - Lu-Lu Ao
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Zhen Yang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
| | - Yi-Lei Wang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China.
| | - Yong-Hua Jiang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
2
|
Pu Q, Ma Y, Zhong Y, Guo J, Gui L, Li M. Characterization and expression analysis of sox3 in medaka gonads. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2020.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Cleft Candidate Genes and Their Products in Human Unilateral Cleft Lip Tissue. Diseases 2021; 9:diseases9020026. [PMID: 33917041 PMCID: PMC8167758 DOI: 10.3390/diseases9020026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/24/2022] Open
Abstract
Cleft lip and palate are common congenital pathologies that affect the human population worldwide. The formation of cleft lip is associated with multiple genes and their coded proteins, which regulate the development of craniofacial region, but the exact role of these factors is not always clear. The use of morphological studies for evaluation of human cleft-affected tissue has been limited because of insufficiency of available pathological material. The aim of this study was to detect and compare the immunohistochemical expression of cleft candidate gene coded proteins (DLX4, MSX2, HOXB3, SHH, PAX7, SOX3, WNT3A, and FOXE1) in the non-syndromic unilateral cleft lip patient tissue and control group tissue. A semiquantitative counting method was used to evaluate the tissue in biotin-streptavidin-stained slides. Statistically significant differences between the patient and control groups were found for the number of immunoreactive structures for SHH (p = 0.019) and FOXE1 (p = 0.011) in the connective tissue and SOX3 (p = 0.012) in the epithelium. Multiple statistically significant very strong and strong correlations were found between the immunoreactives in cleft-affected tissue. These significant differences and various correlations indicate that multiple morphopathogenetic pathways are possibly involved in unilateral cleft lip pathogenesis. Therefore, we further discuss these possible interactions.
Collapse
|
4
|
Zafar I, Iftikhar R, Ahmad SU, Rather MA. Genome wide identification, phylogeny, and synteny analysis of sox gene family in common carp ( Cyprinus carpio). ACTA ACUST UNITED AC 2021; 30:e00607. [PMID: 33936955 PMCID: PMC8076717 DOI: 10.1016/j.btre.2021.e00607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/20/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
27 SOX (high-mobility group HMG-box) genes were identified in the C. carp genome. SOX genes ranging from 3496 (SOX6) to 924bp (SOX17b) which coded with putative protein series from 307 to 509 amino acids. Gene ontology revealed SOX proteins maximum involvement is in metabolic process 49.796 %. Chromosomal location and synteny analysis display all SOX gene are located on different chromosomes.
Common carp (Cyprinus carpio) is a commercial fish species valuable for nutritious components and plays a vital role in human healthy nutrition. The SOX (SRY-related genes systematically characterized by a high-mobility group HMG-box) encoded important gene regulatory proteins, a family of transcription factors found in a broad range of animal taxa and extensively known for its contribution in multiple developmental processes including contribution in sex determination across phyla. In our current study, we initially accomplished a genome-wide analysis to report the SOX gene family in common carp fish based on available genomic sequences of zebrafish retrieved from gene repository databases, we focused on the global identification of the Sox gene family in Common carp among wide range of vertebrates and teleosts based on bioinformatics tools and techniques and explore the evolutionary relationships. In our results, a total of 27 SOX (high-mobility group HMG-box) domain genes were identified in the C. carp genome. The full length sequences of SOX genes ranging from 3496 (SOX6) to 924bp (SOX17b) which coded with putative proteins series from 307 to 509 amino acids and all gene having exon number expect SOX9 and SOX13. All the SOX proteins contained at least one conserved DNA-binding HMG-box domain and two (SOX7 and SOX18) were found C terminal. The Gene ontology revealed SOX proteins maximum involvement is in metabolic process 49.796 %, average in biological regulation 45.188 %, biosynthetic process (19.992 %), regulation of cellular process 39.68, 45.508 % organic substance metabolic process, multicellular organismal process 23.23 %,developmental process 21.74 %, system development 16.59 %, gene expression 16.05 % and 14.337 % of RNA metabolic process. Chromosomal location and syntanic analysis show all SOX gene are located on different chromosomes and apparently does not fallow the unique pattern. The maximum linkage of chromosome is (2) on Unplaced Scaffold region. Finally, our results provide important genomic suggestion for upcoming studies of biochemical, physiological, and phylogenetic understanding on SOX genes among teleost.
Collapse
Affiliation(s)
- Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University Pakistan, Punjab, Pakistan
| | - Rida Iftikhar
- Department of Bioinformatics and Computational Biology, Virtual University Pakistan, Punjab, Pakistan
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Fauclty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India
- Corresponding author.
| |
Collapse
|
5
|
Schock EN, LaBonne C. Sorting Sox: Diverse Roles for Sox Transcription Factors During Neural Crest and Craniofacial Development. Front Physiol 2020; 11:606889. [PMID: 33424631 PMCID: PMC7793875 DOI: 10.3389/fphys.2020.606889] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
Sox transcription factors play many diverse roles during development, including regulating stem cell states, directing differentiation, and influencing the local chromatin landscape. Of the twenty vertebrate Sox factors, several play critical roles in the development the neural crest, a key vertebrate innovation, and the subsequent formation of neural crest-derived structures, including the craniofacial complex. Herein, we review the specific roles for individual Sox factors during neural crest cell formation and discuss how some factors may have been essential for the evolution of the neural crest. Additionally, we describe how Sox factors direct neural crest cell differentiation into diverse lineages such as melanocytes, glia, and cartilage and detail their involvement in the development of specific craniofacial structures. Finally, we highlight several SOXopathies associated with craniofacial phenotypes.
Collapse
Affiliation(s)
- Elizabeth N. Schock
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, United States
| |
Collapse
|
6
|
Verheijen N, Suttorp CM, van Rheden REM, Regan RF, Helmich MPAC, Kuijpers-Jagtman AM, Wagener FADTG. CXCL12-CXCR4 Interplay Facilitates Palatal Osteogenesis in Mice. Front Cell Dev Biol 2020; 8:771. [PMID: 32974338 PMCID: PMC7471603 DOI: 10.3389/fcell.2020.00771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Cranial neural crest cells (CNCCs), identified by expression of transcription factor Sox9, migrate to the first branchial arch and undergo proliferation and differentiation to form the cartilage and bone structures of the orofacial region, including the palatal bone. Sox9 promotes osteogenic differentiation and stimulates CXCL12-CXCR4 chemokine-receptor signaling, which elevates alkaline phosphatase (ALP)-activity in osteoblasts to initiate bone mineralization. Disintegration of the midline epithelial seam (MES) is crucial for palatal fusion. Since we earlier demonstrated chemokine-receptor mediated signaling by the MES, we hypothesized that chemokine CXCL12 is expressed by the disintegrating MES to promote the formation of an osteogenic center by CXCR4-positive osteoblasts. Disturbed migration of CNCCs by excess oxidative and inflammatory stress is associated with increased risk of cleft lip and palate (CLP). The cytoprotective heme oxygenase (HO) enzymes are powerful guardians harnessing injurious oxidative and inflammatory stressors and enhances osteogenic ALP-activity. By contrast, abrogation of HO-1 or HO-2 expression promotes pregnancy pathologies. We postulate that Sox9, CXCR4, and HO-1 are expressed in the ALP-activity positive osteogenic regions within the CNCCs-derived palatal mesenchyme. To investigate these hypotheses, we studied expression of Sox9, CXCL12, CXCR4, and HO-1 in relation to palatal osteogenesis between E15 and E16 using (immuno)histochemical staining of coronal palatal sections in wild-type (wt) mice. In addition, the effects of abrogated HO-2 expression in HO-2 KO mice and inhibited HO-1 and HO-2 activity by administrating HO-enzyme activity inhibitor SnMP at E11 in wt mice were investigated at E15 or E16 following palatal fusion. Overexpression of Sox9, CXCL12, CXCR4, and HO-1 was detected in the ALP-activity positive osteogenic regions within the palatal mesenchyme. Overexpression of Sox9 and CXCL12 by the disintegrating MES was detected. Neither palatal fusion nor MES disintegration seemed affected by either HO-2 abrogation or inhibition of HO-activity. Sox9 progenitors seem important to maintain the CXCR4-positive osteoblast pool to drive osteogenesis. Sox9 expression may facilitate MES disintegration and palatal fusion by promoting epithelial-to-mesenchymal transformation (EMT). CXCL12 expression by the MES and the palatal mesenchyme may promote osteogenic differentiation to create osteogenic centers. This study provides novel evidence that CXCL12-CXCR4 interplay facilitates palatal osteogenesis and palatal fusion in mice.
Collapse
Affiliation(s)
- Nanne Verheijen
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christiaan M Suttorp
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - René E M van Rheden
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Raymond F Regan
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria P A C Helmich
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland.,Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Frank A D T G Wagener
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
Dasgupta K, Chung JU, Asam K, Jeong J. Molecular patterning of the embryonic cranial mesenchyme revealed by genome-wide transcriptional profiling. Dev Biol 2019; 455:434-448. [PMID: 31351040 PMCID: PMC6842427 DOI: 10.1016/j.ydbio.2019.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
In the head of an embryo, a layer of mesenchyme surrounds the brain underneath the surface ectoderm. This cranial mesenchyme gives rise to the meninges, the calvaria (top part of the skull), and the dermis of the scalp. Abnormal development of these structures, especially the meninges and the calvaria, is linked to significant congenital defects in humans. It has been known that different areas of the cranial mesenchyme have different fates. For example, the calvarial bone develops from the cranial mesenchyme on the baso-lateral side of the head just above the eye (supraorbital mesenchyme, SOM), but not from the mesenchyme apical to SOM (early migrating mesenchyme, EMM). However, the molecular basis of this difference is not fully understood. To answer this question, we compared the transcriptomes of EMM and SOM using high-throughput sequencing (RNA-seq). This experiment identified a large number of genes that were differentially expressed in EMM and SOM, and gene ontology analyses found very different terms enriched in each region. We verified the expression of about 40 genes in the head by RNA in situ hybridization, and the expression patterns were annotated to make a map of molecular markers for 6 subdivisions of the cranial mesenchyme. Our data also provided insights into potential novel regulators of cranial mesenchyme development, including several axon guidance pathways, lectin complement pathway, cyclic-adenosine monophosphate (cAMP) signaling pathway, and ZIC family transcription factors. Together, information in this paper will serve as a unique resource to guide future research on cranial mesenchyme development.
Collapse
Affiliation(s)
- Krishnakali Dasgupta
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Jong Uk Chung
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Kesava Asam
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
8
|
Li S, Xie L, Xiao J, Yuan L, Zhou T, Luo K, Zhang C, Zhao R, Tao M, Liu S. Diploid hybrid fish derived from the cross between female Bleeker's yellow tail and male topmouth culter, two cyprinid fishes belonging to different subfamilies. BMC Genet 2019; 20:80. [PMID: 31646976 PMCID: PMC6813094 DOI: 10.1186/s12863-019-0781-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/26/2019] [Indexed: 01/09/2023] Open
Abstract
Background Bleeker’s yellow tail (Xenocypris davidi Bleeker, YT) and topmouth culter (Culter alburnus Basilewsky, TC) are both famous and important economic freshwater fish in China. YT, a kind of omnivorous fish, has strong resistance. TC, a kind of carnivorous fish, has high-quality meat but poor resistance. Distant hybridization can integrate the advantages of both parents. There has been no previous report regarding hybrid fish derived from female YT × male TC. It is expected that hybridization of these two kinds of fish will result in F1 hybrids with improved characteristics, such as faster growth rate, stronger resistance, and high-quality meat, which are of great significance in fish genetic breeding. Results In this study, we investigated the main biological characteristics of diploid hybrid fish derived from female YT × male TC. The hybrids had an intermediate number of upper lateral line scales between those for YT and TC. The hybrids were diploids with 48 chromosomes and had the same karyotype formula as their parents. The hybrids generated variations in 5S rDNA (designated class IV: 212 bp) and lost specific 5S rDNA derived from the maternal parent (designated class II: 221 bp), which might be related to hybridization. In terms of reproductive traits, all the tested female hybrids exhibited normal gonadal development, and the two-year-old F1 females produced mature eggs. However, all the tested testes of the male hybrids could not produce mature sperm. It is possible that the hybrid lineage will be established by back-crossing the fertile female hybrids and their parents. Conclusions Obtaining a fertile female hybrid fish made the creation of a new type of fish possible, which was significant in fish genetic breeding.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Lihua Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Liujiao Yuan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Tian Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
9
|
Identification and expression of transcription factor sox2 in large yellow croaker Larimichthys crocea. Theriogenology 2018; 120:123-137. [PMID: 30118947 DOI: 10.1016/j.theriogenology.2018.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 12/25/2022]
Abstract
As an important transcription and pluripotency factor, Sox2 plays its functions essentially in the regulation of self-renewal and pluripotency of embryonic and neural stem cells, as well as embryogenesis, organogenesis, neurogenesis and regeneration. The data is lacking on Sox2 in large yellow croaker (Larimichthys crocea) (Lc-Sox2) which is a limitation on the generation of induced pluripotent stem cells (iPSCs). In this study, Lc-sox2 was cloned by RACE (rapid amplification of cDNA ends) and analyzed by Bioinformatics. The quantitative real-time PCR (qRT-PCR) and whole mount in situ hybridization (WISH) were used to detect the expression of Lc-sox2. The full-length cDNA sequence of Lc-sox2 is 2135 bp and encodes a 322-aa (amino acids). Lc-Sox2 possesses a highly conserved HMG-box as DNA-binding domain, maintains highly conserved with vertebrates, particularly with teleosts. In tissues, Lc-sox2 was expressed with gender difference in brain and eye (female > male), in embryos, Lc-sox2 was expressed with a zygotic type that the high level expression began to appear in the gastrula stage. The spatio-temporal expression patterns of Lc-sox2 suggested the potential involvement in embryogenesis, neurogenesis, gametogenesis and adult physiological processes of large yellow croaker. Our results contributed to better understanding of Sox2 from large yellow croaker.
Collapse
|
10
|
Xia X, Wan R, Huo W, Zhang L, Xia X, Chang Z. Molecular cloning and mRNA expression pattern of
$$\varvec{Sox}$$
Sox
4 in Misgurnus anguillicaudatus. J Genet 2018. [DOI: 10.1007/s12041-018-0972-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Xia X, Huo W, Wan R, Wang P, Zhang L, Chang Z. Molecular cloning, characterization, and expression profiles of the
Sox3
gene in Chinese loach
Paramisgurnus dabryanus. Evol Dev 2018; 20:108-118. [DOI: 10.1111/ede.12252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaohua Xia
- College of Life ScienceHenan Normal UniversityXinxiangHenanPeople's Republic of China
| | - Weiran Huo
- College of Life ScienceHenan Normal UniversityXinxiangHenanPeople's Republic of China
| | - Ruyan Wan
- College of Life ScienceHenan Normal UniversityXinxiangHenanPeople's Republic of China
| | - Peijin Wang
- College of Life ScienceHenan Normal UniversityXinxiangHenanPeople's Republic of China
| | - Linxia Zhang
- College of Life ScienceHenan Normal UniversityXinxiangHenanPeople's Republic of China
| | - Zhongjie Chang
- College of Life ScienceHenan Normal UniversityXinxiangHenanPeople's Republic of China
| |
Collapse
|
12
|
Liang T, Jia Y, Zhang R, Du Q, Chang Z. Identification, molecular characterization and analysis of the expression pattern of $${\varvec{SoxF}}$$ SoxF subgroup genes the Yellow River carp, $${\varvec{Cyprinus} \varvec{carpio}}$$ Cyprinus carpio. J Genet 2018. [DOI: 10.1007/s12041-018-0898-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Sanz-Navarro M, Seidel K, Sun Z, Bertonnier-Brouty L, Amendt BA, Klein OD, Michon F. Plasticity within the niche ensures the maintenance of a Sox2+ stem cell population in the mouse incisor. Development 2018; 145:dev.155929. [PMID: 29180573 DOI: 10.1242/dev.155929] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022]
Abstract
In mice, the incisors grow throughout the animal's life, and this continuous renewal is driven by dental epithelial and mesenchymal stem cells. Sox2 is a principal marker of the epithelial stem cells that reside in the mouse incisor stem cell niche, called the labial cervical loop, but relatively little is known about the role of the Sox2+ stem cell population. In this study, we show that conditional deletion of Sox2 in the embryonic incisor epithelium leads to growth defects and impairment of ameloblast lineage commitment. Deletion of Sox2 specifically in Sox2+ cells during incisor renewal revealed cellular plasticity that leads to the relatively rapid restoration of a Sox2-expressing cell population. Furthermore, we show that Lgr5-expressing cells are a subpopulation of dental Sox2+ cells that also arise from Sox2+ cells during tooth formation. Finally, we show that the embryonic and adult Sox2+ populations are regulated by distinct signalling pathways, which is reflected in their distinct transcriptomic signatures. Together, our findings demonstrate that a Sox2+ stem cell population can be regenerated from Sox2- cells, reinforcing its importance for incisor homeostasis.
Collapse
Affiliation(s)
- Maria Sanz-Navarro
- Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.,Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki, 00290 Helsinki, Finland
| | - Kerstin Seidel
- Department of Orofacial Sciences and Program in Craniofacial Biology, UCSF, San Francisco, CA 94143, USA
| | - Zhao Sun
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Ludivine Bertonnier-Brouty
- Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.,Département de Biologie, École Normale Supérieure de Lyon, Université de Lyon, 69007 Lyon, France
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA.,College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, UCSF, San Francisco, CA 94143, USA.,Department of Pediatrics and Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Frederic Michon
- Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland .,Keele Medical School and Institute for Science and Technology in Medicine, Keele University, Keele ST5 5BG, UK
| |
Collapse
|
14
|
Cela P, Hampl M, Shylo NA, Christopher KJ, Kavkova M, Landova M, Zikmund T, Weatherbee SD, Kaiser J, Buchtova M. Ciliopathy Protein Tmem107 Plays Multiple Roles in Craniofacial Development. J Dent Res 2017; 97:108-117. [PMID: 28954202 DOI: 10.1177/0022034517732538] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A broad spectrum of human diseases called ciliopathies is caused by defective primary cilia morphology or signal transduction. The primary cilium is a solitary organelle that responds to mechanical and chemical stimuli from extracellular and intracellular environments. Transmembrane protein 107 (TMEM107) is localized in the primary cilium and is enriched at the transition zone where it acts to regulate protein content of the cilium. Mutations in TMEM107 were previously connected with oral-facial-digital syndrome, Meckel-Gruber syndrome, and Joubert syndrome exhibiting a range of ciliopathic defects. Here, we analyze a role of Tmem107 in craniofacial development with special focus on palate formation, using mouse embryos with a complete knockout of Tmem107. Tmem107-/- mice were affected by a broad spectrum of craniofacial defects, including shorter snout, expansion of the facial midline, cleft lip, extensive exencephaly, and microphthalmia or anophthalmia. External abnormalities were accompanied by defects in skeletal structures, including ossification delay in several membranous bones and enlargement of the nasal septum or defects in vomeronasal cartilage. Alteration in palatal shelves growth resulted in clefting of the secondary palate. Palatal defects were caused by increased mesenchymal proliferation leading to early overgrowth of palatal shelves followed by defects in their horizontalization. Moreover, the expression of epithelial stemness marker SOX2 was altered in the palatal shelves of Tmem107-/- animals, and differences in mesenchymal SOX9 expression demonstrated the enhancement of neural crest migration. Detailed analysis of primary cilia revealed region-specific changes in ciliary morphology accompanied by alteration of acetylated tubulin and IFT88 expression. Moreover, Shh and Gli1 expression was increased in Tmem107-/- animals as shown by in situ hybridization. Thus, TMEM107 is essential for proper head development, and defective TMEM107 function leads to ciliary morphology disruptions in a region-specific manner, which may explain the complex mutant phenotype.
Collapse
Affiliation(s)
- P Cela
- 1 Institute of Animal Physiology and Genetics, CAS, Brno, Czech Republic.,2 Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - M Hampl
- 1 Institute of Animal Physiology and Genetics, CAS, Brno, Czech Republic.,3 Department of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - N A Shylo
- 4 Department of Genetics, Yale University, School of Medicine, New Haven, CT, USA
| | - K J Christopher
- 4 Department of Genetics, Yale University, School of Medicine, New Haven, CT, USA
| | - M Kavkova
- 5 CEITEC-Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - M Landova
- 1 Institute of Animal Physiology and Genetics, CAS, Brno, Czech Republic.,3 Department of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - T Zikmund
- 5 CEITEC-Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - S D Weatherbee
- 4 Department of Genetics, Yale University, School of Medicine, New Haven, CT, USA
| | - J Kaiser
- 5 CEITEC-Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - M Buchtova
- 1 Institute of Animal Physiology and Genetics, CAS, Brno, Czech Republic.,3 Department of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| |
Collapse
|
15
|
Xia X, Wan R, Huo W, Zhang L, Xia X, Chang Z. Molecular cloning and mRNA expression pattern of Sox4 in Paramisgurnus dabryanus. Gene Expr Patterns 2017. [PMID: 28629960 DOI: 10.1016/j.gep.2017.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sox4 belonged to the SoxC subfamily of the Sox family, which play important roles in the development of the vertebrate gonad and nervous system. A Sox4 homologue was cloned from brain of Paramisgurnus dabryanus by using homologous cloning and rapid amplification of cDNA ends (RACE), designated as PdSox4. The full-length cDNA was 2163bp, containing the 759bp 5'-untranslated region, 267bp 3'-untranslated region and encoding a putative protein of 378 amino acids with a characteristic high mobility group box (HMG-box) DNA-binding domain of 79 amino acids with the specific motif (RPMNAFMVW). Alignment and phylogenetic analyses indicated that PdSox4 shares highly identical sequence with Sox4 homologues from different species. The signal peptide analysis predicted that PdSox4 is a non-secretory protein. The hydropathy profile of PdSox4 protein revealed that this protein is hydrophilic in nature. The expression profiles of PdSox4 in different developmental stages and various adult tissues of sexs were analyzed by quantitative real-time RT-PCR (qRT-PCR) and In situ hybridization (ISH). The results showed that PdSox4 was ubiquitously expressed during embryogenesis and various adult tissues, especially in central nervous system. Tissue distribution analyses revealed that PdSox4 was expression in developing germ cells. Taken together, these preliminary findings suggested that PdSox4 is highly conserved during vertebrate evolution and involved in a wide range of developmental processes including embryogenesis, neurogenesis and gonad development.
Collapse
Affiliation(s)
- Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Ruyan Wan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Weiran Huo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Linxia Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Xiaopei Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| |
Collapse
|