1
|
Park K, Kim WS, Choi B, Kwak IS. Differential Expression of the Apolipoprotein AI Gene in Spotnape Ponyfish ( Nuchequula nuchalis) Inhabiting Different Salinity Ranges at the Top of the Estuary and in the Deep-Bay Area of Gwangyang Bay, South Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010960. [PMID: 34682707 PMCID: PMC8536079 DOI: 10.3390/ijerph182010960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
Spotnape ponyfish (Nuchequula nuchalis) is a dominant species that is broadly distributed from estuarine to deep-bay areas, reflecting a euryhaline habitat. Apolipoprotein AI (ApoAI) is a main component of plasma lipoproteins and has crucial roles in lipid metabolism and the defense immune system. In this study, we characterized the N. nuchalis ApoAI gene and analyzed the expression of the ApoAI transcript in N. nuchalis collected at various sites in the estuary and the deep-bay area which have different salinities. Owing to the fish’s mobility, we conducted stable isotope analyses to confirm the habitat characteristics of N. nuchalis. Carbon and nitrogen isotope ratios (δ13C and δ15N) from N. nuchalis indicated different feeding sources and trophic levels in the estuarine and deep-bay habitats. The characterized N. nuchalis ApoAI displayed residual repeats that formed a pair of alpha helices, indicating that the protein belongs to the apolipoprotein family. In the phylogenetic analysis, there was no sister group of N. nuchalis ApoAI among the large clades of fish species. The transcriptional expression level of ApoAI was higher in N. nuchalis inhabiting the deep-bay area with a high salinity (over 31 psu) than in N. nuchalis inhabiting the top of the estuary with a low salinity (6~15 psu). In addition, the expression patterns of N. nuchalis ApoAI were positively correlated with environmental factors (transparency, pH, TC, and TIC) in the high salinity area. These results suggest that ApoAI gene expression can reflect habitat characteristics of N. nuchalis which traverse broad salinity ranges and is associated with functional roles of osmoregulation and lipid metabolism for fish growth and development.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Korea;
| | - Won-Seok Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea;
| | - Bohyung Choi
- Inland Fisheries Research Institute, National Institute of Fisheries Science, Geumsan-gun 32762, Korea;
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Korea;
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea;
- Correspondence: ; Tel.: +82-61-659-7148; Fax: +82-61-659-7149
| |
Collapse
|
2
|
An improved de novo assembling and polishing of Solea senegalensis transcriptome shed light on retinoic acid signalling in larvae. Sci Rep 2020; 10:20654. [PMID: 33244091 PMCID: PMC7691524 DOI: 10.1038/s41598-020-77201-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Senegalese sole is an economically important flatfish species in aquaculture and an attractive model to decipher the molecular mechanisms governing the severe transformations occurring during metamorphosis, where retinoic acid seems to play a key role in tissue remodeling. In this study, a robust sole transcriptome was envisaged by reducing the number of assembled libraries (27 out of 111 available), fine-tuning a new automated and reproducible set of workflows for de novo assembling based on several assemblers, and removing low confidence transcripts after mapping onto a sole female genome draft. From a total of 96 resulting assemblies, two "raw" transcriptomes, one containing only Illumina reads and another with Illumina and GS-FLX reads, were selected to provide SOLSEv5.0, the most informative transcriptome with low redundancy and devoid of most single-exon transcripts. It included both Illumina and GS-FLX reads and consisted of 51,348 transcripts of which 22,684 code for 17,429 different proteins described in databases, where 9527 were predicted as complete proteins. SOLSEv5.0 was used as reference for the study of retinoic acid (RA) signalling in sole larvae using drug treatments (DEAB, a RA synthesis blocker, and TTNPB, a RA-receptor agonist) for 24 and 48 h. Differential expression and functional interpretation were facilitated by an updated version of DEGenes Hunter. Acute exposure of both drugs triggered an intense, specific and transient response at 24 h but with hardly observable differences after 48 h at least in the DEAB treatments. Activation of RA signalling by TTNPB specifically increased the expression of genes in pathways related to RA degradation, retinol storage, carotenoid metabolism, homeostatic response and visual cycle, and also modified the expression of transcripts related to morphogenesis and collagen fibril organisation. In contrast, DEAB mainly decreased genes related to retinal production, impairing phototransduction signalling in the retina. A total of 755 transcripts mainly related to lipid metabolism, lipid transport and lipid homeostasis were altered in response to both treatments, indicating non-specific drug responses associated with intestinal absorption. These results indicate that a new assembling and transcript sieving were both necessary to provide a reliable transcriptome to identify the many aspects of RA action during sole development that are of relevance for sole aquaculture.
Collapse
|
3
|
Hachero-Cruzado I, Rodriguez-Rua A, Torrent I, Roman-Padilla J, Manchado M. Assessment of Growth, Lipid Metabolism and Gene Expression Responses in Senegalese Sole Larvae Fed With Low Dietary Phospholipid Levels. Front Physiol 2020; 11:572545. [PMID: 33123028 PMCID: PMC7569605 DOI: 10.3389/fphys.2020.572545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/25/2020] [Indexed: 01/17/2023] Open
Abstract
Phospholipids (PL) are essential molecules for larval growth and development. In this study, growth, lipid metabolism and gene expression responses associated with different dietary PL levels in pelagic sole larvae were evaluated. In a first trial, the long-term effects on growth and survival of two experimental microdiets (MD) containing high (High-PL) or low (Low-PL) PL levels were tested and compared to a diet based on live prey (rotifers). The MD were supplied from 3 to 10 days post-hatch (dph) and Artemia from day 8 to 29 dph. High-PL fed larvae had higher dry mass (1.2-fold) than Low-PL fed larvae at 8 dph and both MD were smaller (2.9-fold) than larvae fed live preys. However, a compensatory growth (33% between 8 and 20 dph) occurred when MD were substituted by Artemia and by the end of the trial no significant differences in mass or survival occurred between the dietary treatments. In a second trial, growth, lipid metabolism and gene expression profiles of larvae fed with MD up to 8 dph were analyzed. Growth data confirmed that mass of larvae fed with High-PL was higher (1.3-fold) than the those fed Low-PL and they had lower levels of triacylglycerol (2.8-fold), cholesterol (1.2-fold) and cetoleic acid (1.7-fold). Histological analysis indicated an excess of lipid vacuoles in larvae fed with Low-PL and the expression analysis revealed a coordinated response to enhance lipid mobilization since the expression of genes involved in PL intermediate synthesis, PL remodeling as well as eight apolipoprotein was up-regulated. The down-regulation of apolipoprotein apob2 in larvae fed with Low-PL indicated a specific regulation by PL levels. The present work provides insight into the responses associated with dietary PL in early fish larvae, which will be of use for future studies aimed as designing effective larval sole diets.
Collapse
Affiliation(s)
- Ismael Hachero-Cruzado
- IFAPA Centro El Toruño, Junta de Andalucía, El Puerto de Santa María, Spain.,"Crecimiento Azul", Centro IFAPA El Toruño, Unidad Asociada al CSIC, El Puerto de Santa María, Spain
| | - Ana Rodriguez-Rua
- IFAPA Centro El Toruño, Junta de Andalucía, El Puerto de Santa María, Spain.,Centro Oceanográfico de Cádiz, Instituto Español de Oceanografía, Cádiz, Spain
| | - Ivana Torrent
- IFAPA Centro El Toruño, Junta de Andalucía, El Puerto de Santa María, Spain
| | | | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, El Puerto de Santa María, Spain.,"Crecimiento Azul", Centro IFAPA El Toruño, Unidad Asociada al CSIC, El Puerto de Santa María, Spain
| |
Collapse
|
4
|
Wang W, Qu Q, Chen J. Identification, expression analysis, and antibacterial activity of Apolipoprotein A-I from amphioxus (Branchiostoma belcheri). Comp Biochem Physiol B Biochem Mol Biol 2019; 238:110329. [DOI: 10.1016/j.cbpb.2019.110329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/25/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022]
|
5
|
Campinho MA. Teleost Metamorphosis: The Role of Thyroid Hormone. Front Endocrinol (Lausanne) 2019; 10:383. [PMID: 31258515 PMCID: PMC6587363 DOI: 10.3389/fendo.2019.00383] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
In most teleosts, metamorphosis encompasses a dramatic post-natal developmental process where the free-swimming larvae undergo a series of morphological, cellular and physiological changes that enable the larvae to become a fully formed, albeit sexually immature, juvenile fish. In all teleosts studied to date thyroid hormones (TH) drive metamorphosis, being the necessary and sufficient factors behind this developmental transition. During metamorphosis, negative regulation of thyrotropin by thyroxine (T4) is relaxed allowing higher whole-body levels of T4 that enable specific responses at the tissue/cellular level. Higher local thyroid cellular signaling leads to cell-specific responses that bring about localized developmental events. TH orchestrate in a spatial-temporal manner all local developmental changes so that in the end a fully functional organism arises. In bilateral teleost species, the most evident metamorphic morphological change underlies a transition to a more streamlined body. In the pleuronectiform lineage (flatfishes), these metamorphic morphological changes are more dramatic. The most evident is the migration of one eye to the opposite side of the head and the symmetric pelagic larva development into an asymmetric benthic juvenile. This transition encompasses a dramatic loss of the embryonic derived dorsal-ventral and left-right axis. The embryonic dorsal-ventral axis becomes the left-right axis, whereas the embryonic left-right axis becomes, irrespectively, the dorsal-ventral axis of the juvenile animal. This event is an unparalleled morphological change in vertebrate development and a remarkable display of the capacity of TH-signaling in shaping adaptation and evolution in teleosts. Notwithstanding all this knowledge, there are still fundamental questions in teleost metamorphosis left unanswered: how the central regulation of metamorphosis is achieved and the neuroendocrine network involved is unclear; the detailed cellular and molecular events that give rise to the developmental processes occurring during teleost metamorphosis are still mostly unknown. Also in flatfish, comparatively little is still known about the developmental processes behind asymmetric development. This review summarizes the current knowledge on teleost metamorphosis and explores the gaps that still need to be challenged.
Collapse
|
6
|
Carballo C, Ortiz-Delgado JB, Berbel C, Castro D, Borrego JJ, Sarasquete C, Manchado M. Feed and immersion challenges with lymphocystis disease virus (LCDV) reveals specific mechanisms for horizontal transmission and immune response in senegalese sole post-larvae. FISH & SHELLFISH IMMUNOLOGY 2019; 89:710-718. [PMID: 30999043 DOI: 10.1016/j.fsi.2019.04.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/05/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
The horizontal transmission of lymphocystis disease virus (LCDV) through contaminated water and feed (using artemia as vehicle) and the associated immune gene expression profiles in Senegalese sole post-larvae were investigated. All specimens analyzed were positive for LCDV DNA detection at 1-day post-challenge (1 dpc) with the highest viral levels in specimens infected through the immersion route. However, the percentage of LCDV-positive animals and number of viral DNA copies dropped progressively at 2 and 7 dpc. The histological analysis identified structural changes in the skin, muscle and gills of sole post-larvae LCDV-challenged by immersion. In situ hybridization confirmed a wide distribution of LCDV in the skin, gut, surrounding vessels in trunk muscle and head kidney in the immersion route, while the signals were restricted to the liver and lamina propria in the feeding treatment. Expression analysis using a set of 22 genes related to innate immune defense system demonstrated clear differences in the time-course response to LCDV as function of the infection route. Most antiviral defense genes, the proinflammatory cytokines, the complement c3, g-type lysozyme and T-cell markers cd4 and cd8a were rapidly induced in the feeding-infected post-larvae, and they were remained activated at 2 dpc. In contrast, in the immersion-infected post-larvae the induction of most defensive genes was delayed, with a low intensity at 2 dpc. All these data demonstrate that LCDV can horizontally infect Senegalese sole post-larvae through the water or feed although with different patterns of histopathological disorders, virus distribution and route-specific expression profiles.
Collapse
Affiliation(s)
- Carlos Carballo
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500, El Puerto de Santa María, Cádiz, Spain
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC-Campus Universitario Río San Pedro, Puerto Real, 11510, Cádiz, Spain
| | - Concha Berbel
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500, El Puerto de Santa María, Cádiz, Spain
| | - Dolores Castro
- Universidad de Málaga, Departamento de Microbiología, Campus Teatinos, 29071, Málaga, Spain
| | - Juan J Borrego
- Universidad de Málaga, Departamento de Microbiología, Campus Teatinos, 29071, Málaga, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC-Campus Universitario Río San Pedro, Puerto Real, 11510, Cádiz, Spain
| | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500, El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|
7
|
Sole head transcriptomics reveals a coordinated developmental program during metamorphosis. Genomics 2019; 112:592-602. [PMID: 31071460 DOI: 10.1016/j.ygeno.2019.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 03/07/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022]
Abstract
Most teleosts undergo a thyroid hormone (TH) regulated larval to juvenile transition known as metamorphosis. In Pleuronectiformes (flatfish), metamorphosis is most dramatic, and one eye of the symmetric pelagic larvae migrates to the opposite side of the head, giving rise to an asymmetric benthic juvenile with both eyes on the same side of the body. Asymmetric development occurs mostly in the head. To understand the genetic mechanisms underlying this developmental change we have generated a Solea senegalensis metamorphosing flatfish head transcriptome. Our results reveal that THs acting as integrative factors direct a stepwise genetic program that initiates a specific organismal level response followed by cell specific responses that lead to the long-term changes that characterise the post-metamorphic identity and physiology of the head. Flatfish head asymmetric development during metamorphosis and its TH dependency is conserved thus we consider the findings in sole most likely representative of all flatfish species.
Collapse
|
8
|
Roman-Padilla J, Rodríguez-Rúa A, Carballo C, Manchado M, Hachero-Cruzado I. Phylogeny and expression patterns of two apolipoprotein E genes in the flatfish Senegalese sole. Gene 2018; 643:7-16. [DOI: 10.1016/j.gene.2017.11.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/15/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023]
|
9
|
Firmino J, Carballo C, Armesto P, Campinho MA, Power DM, Manchado M. Phylogeny, expression patterns and regulation of DNA Methyltransferases in early development of the flatfish, Solea senegalensis. BMC DEVELOPMENTAL BIOLOGY 2017; 17:11. [PMID: 28716037 PMCID: PMC5513168 DOI: 10.1186/s12861-017-0154-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
Background The identification of DNA methyltransferases (Dnmt) expression patterns during development and their regulation is important to understand the epigenetic mechanisms that modulate larval plasticity in marine fish. In this study, dnmt1 and dnmt3 paralogs were identified in the flatfish Solea senegalensis and expression patterns in early developmental stages and juveniles were determined. Additionally, the regulation of Dnmt transcription by a specific inhibitor (5-aza-2′-deoxycytidine) and temperature was evaluated. Results Five paralog genes of dnmt3, namely dnmt3aa, dnmt3ab, dnmt3ba, dnmt3bb.1 and dnmt3bb.2 and one gene for dnmt1 were identified. Phylogenetic analysis revealed that the dnmt gene family was highly conserved in teleosts and three fish-specific genes, dnmt3aa, dnmt3ba and dnmt3bb.2 have evolved. The spatio-temporal expression patterns of four dnmts (dnmt1, dnmt3aa, dnmt3ab and dnmt3bb.1) were different in early larval stages although all of them reduced expression with the age and were detected in neural organs and dnmt3aa appeared specific to somites. In juveniles, the four dnmt genes were expressed in brain and hematopoietic tissues such as kidney, spleen and gills. Treatment of sole embryos with 5-aza-2′-deoxycytidine down-regulated dntm1 and up-regulated dntm3aa. Moreover, in lecithotrophic larval stages, dnmt3aa and dnmt3ab were temperature sensitive and their expression was higher in larvae incubated at 16 °C relative to 20 °C. Conclusion Five dnmt3 and one dnmt1 paralog were identified in sole and their distinct developmental and tissue-specific expression patterns indicate that they may have different roles during development. The inhibitor 5-aza-2′-deoxycytidine modified the transcript abundance of dntm1 and dntm3aa in embryos, which suggests that a regulatory feedback mechanism exists for these genes. The impact of thermal regime on expression levels of dnmt3aa and dnmt3ab in lecithotrophic larval stages suggests that these paralogs might be involved in thermal programing. Electronic supplementary material The online version of this article (doi:10.1186/s12861-017-0154-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joana Firmino
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.,Comparative Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, 8005-139, Faro, Portugal
| | - Carlos Carballo
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Paula Armesto
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Marco A Campinho
- Comparative Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, 8005-139, Faro, Portugal
| | - Deborah M Power
- Comparative Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, 8005-139, Faro, Portugal
| | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|