1
|
Mohamed AA, Sargent E, Williams C, Karve Z, Nair K, Lucke-Wold B. Advancements in Neurosurgical Intraoperative Histology. Tomography 2024; 10:693-704. [PMID: 38787014 PMCID: PMC11125713 DOI: 10.3390/tomography10050054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Despite their relatively low incidence globally, central nervous system (CNS) tumors remain amongst the most lethal cancers, with only a few other malignancies surpassing them in 5-year mortality rates. Treatment decisions for brain tumors heavily rely on histopathological analysis, particularly intraoperatively, to guide surgical interventions and optimize patient outcomes. Frozen sectioning has emerged as a vital intraoperative technique, allowing for highly accurate, rapid analysis of tissue samples, although it poses challenges regarding interpretive errors and tissue distortion. Raman histology, based on Raman spectroscopy, has shown great promise in providing label-free, molecular information for accurate intraoperative diagnosis, aiding in tumor resection and the identification of neurodegenerative disease. Techniques including Stimulated Raman Scattering (SRS), Coherent Anti-Stokes Raman Scattering (CARS), Surface-Enhanced Raman Scattering (SERS), and Tip-Enhanced Raman Scattering (TERS) have profoundly enhanced the speed and resolution of Raman imaging. Similarly, Confocal Laser Endomicroscopy (CLE) allows for real-time imaging and the rapid intraoperative histologic evaluation of specimens. While CLE is primarily utilized in gastrointestinal procedures, its application in neurosurgery is promising, particularly in the context of gliomas and meningiomas. This review focuses on discussing the immense progress in intraoperative histology within neurosurgery and provides insight into the impact of these advancements on enhancing patient outcomes.
Collapse
Affiliation(s)
- Ali A. Mohamed
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Emma Sargent
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Cooper Williams
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Zev Karve
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Karthik Nair
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Tan WK, di Pietro M, Fitzgerald RC. Past, present and future of Barrett's oesophagus. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2017; 43:1148-1160. [PMID: 28256346 PMCID: PMC6839968 DOI: 10.1016/j.ejso.2017.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 02/08/2023]
Abstract
Barrett's oesophagus is a condition which predisposes towards development of oesophageal adenocarcinoma, a highly lethal tumour which has been increasing in incidence in the Western world over the past three decades. There have been tremendous advances in the field of Barrett's oesophagus, not only in diagnostic modalities, but also in therapeutic strategies available to treat this premalignant disease. In this review, we discuss the past, present and future of Barrett's oesophagus. We describe the historical and new evolving diagnostic criteria of Barrett's oesophagus, while also comparing and contrasting the British Society of Gastroenterology guidelines, American College of Gastroenterology guidelines and International Benign Barrett's and CAncer Taskforce (BOBCAT) for Barrett's oesophagus. Advances in endoscopic modalities such as confocal and volumetric laser endomicroscopy, and a non-endoscopic sampling device, the Cytosponge, are described which could aid in identification of Barrett's oesophagus. With regards to therapy we review the evidence for the utility of endoscopic mucosal resection and radiofrequency ablation when coupled with better characterization of dysplasia. These endoscopic advances have transformed the management of Barrett's oesophagus from a primarily surgical disease into an endoscopically managed condition.
Collapse
Affiliation(s)
- W K Tan
- MRC Cancer Unit, University of Cambridge, Cambridge, United Kingdom
| | - M di Pietro
- MRC Cancer Unit, University of Cambridge, Cambridge, United Kingdom
| | - R C Fitzgerald
- MRC Cancer Unit, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Ciuti G, Caliò R, Camboni D, Neri L, Bianchi F, Arezzo A, Koulaouzidis A, Schostek S, Stoyanov D, Oddo CM, Magnani B, Menciassi A, Morino M, Schurr MO, Dario P. Frontiers of robotic endoscopic capsules: a review. JOURNAL OF MICRO-BIO ROBOTICS 2016; 11:1-18. [PMID: 29082124 PMCID: PMC5646258 DOI: 10.1007/s12213-016-0087-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/24/2016] [Accepted: 04/07/2016] [Indexed: 12/15/2022]
Abstract
Digestive diseases are a major burden for society and healthcare systems, and with an aging population, the importance of their effective management will become critical. Healthcare systems worldwide already struggle to insure quality and affordability of healthcare delivery and this will be a significant challenge in the midterm future. Wireless capsule endoscopy (WCE), introduced in 2000 by Given Imaging Ltd., is an example of disruptive technology and represents an attractive alternative to traditional diagnostic techniques. WCE overcomes conventional endoscopy enabling inspection of the digestive system without discomfort or the need for sedation. Thus, it has the advantage of encouraging patients to undergo gastrointestinal (GI) tract examinations and of facilitating mass screening programmes. With the integration of further capabilities based on microrobotics, e.g. active locomotion and embedded therapeutic modules, WCE could become the key-technology for GI diagnosis and treatment. This review presents a research update on WCE and describes the state-of-the-art of current endoscopic devices with a focus on research-oriented robotic capsule endoscopes enabled by microsystem technologies. The article also presents a visionary perspective on WCE potential for screening, diagnostic and therapeutic endoscopic procedures.
Collapse
Affiliation(s)
- Gastone Ciuti
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - R Caliò
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - D Camboni
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - L Neri
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy.,Ekymed S.r.l., Livorno, Italy
| | - F Bianchi
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - A Arezzo
- Department of Surgical Disciplines, University of Torino, Torino, Italy
| | - A Koulaouzidis
- Endoscopy Unit, The Royal Infirmary of Edinburgh, Edinburgh, Scotland, UK
| | | | - D Stoyanov
- Centre for Medical Image Computing and the Department of Computer Science, University College London, London, UK
| | - C M Oddo
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | | | - A Menciassi
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| | - M Morino
- Department of Surgical Disciplines, University of Torino, Torino, Italy
| | - M O Schurr
- Ovesco Endoscopy AG, Tübingen, Germany.,Steinbeis University Berlin, Berlin, Germany
| | - P Dario
- The BioRobotics Institute of Scuola Superiore Sant'Anna, Pontedera, Pisa 56025 Italy
| |
Collapse
|
4
|
|
5
|
Sakuma S, Yu JYH, Quang T, Hiwatari KI, Kumagai H, Kao S, Holt A, Erskind J, McClure R, Siuta M, Kitamura T, Tobita E, Koike S, Wilson K, Richards-Kortum R, Liu E, Washington K, Omary R, Gore JC, Pham W. Fluorescence-based endoscopic imaging of Thomsen-Friedenreich antigen to improve early detection of colorectal cancer. Int J Cancer 2014; 136:1095-103. [PMID: 25052906 DOI: 10.1002/ijc.29093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022]
Abstract
Thomsen-Friedenreich (TF) antigen belongs to the mucin-type tumor-associated carbohydrate antigen. Notably, TF antigen is overexpressed in colorectal cancer (CRC) but is rarely expressed in normal colonic tissue. Increased TF antigen expression is associated with tumor invasion and metastasis. In this study, we sought to validate a novel nanobeacon for imaging TF-associated CRC in a preclinical animal model. We developed and characterized the nanobeacon for use with fluorescence colonoscopy. In vivo imaging was performed on an orthotopic rat model of CRC. Both white light and fluorescence colonoscopy methods were utilized to establish the ratio-imaging index for the probe. The nanobeacon exhibited specificity for TF-associated cancer. Fluorescence colonoscopy using the probe can detect lesions at the stage which is not readily confirmed by conventional visualization methods. Further, the probe can report the dynamic change of TF expression as tumor regresses during chemotherapy. Data from this study suggests that fluorescence colonoscopy can improve early CRC detection. Supplemented by the established ratio-imaging index, the probe can be used not only for early detection, but also for reporting tumor response during chemotherapy. Furthermore, since the data obtained through in vivo imaging confirmed that the probe was not absorbed by the colonic mucosa, no registered toxicity is associated with this nanobeacon. Taken together, these data demonstrate the potential of this novel probe for imaging TF antigen as a biomarker for the early detection and prediction of the progression of CRC at the molecular level.
Collapse
Affiliation(s)
- Shinji Sakuma
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Birk JW, Tadros M, Moezardalan K, Nadyarnykh O, Forouhar F, Anderson J, Campagnola P. Second harmonic generation imaging distinguishes both high-grade dysplasia and cancer from normal colonic mucosa. Dig Dis Sci 2014; 59:1529-34. [PMID: 24744180 DOI: 10.1007/s10620-014-3121-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/17/2014] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIM Second harmonic generation (SHG) is a novel imaging technology that could provide optical biopsy during endoscopy with advantages over current technology. SHG has the unique ability to evaluate the amount of extracellular matrix collagen protein and its alignment. METHODS Hematoxylin- and eosin-stained slides from colon biopsies (normal, low-grade dysplasia (LGD), high-grade dysplasia (HGD), and cancer) were examined with SHG imaging. Both signal intensity and collagen fiber alignment were measured. Average intensity per pixel (AIPP) was obtained, and an analyzing polarizer was used to calculate β, an alignment parameter. RESULTS The mean AIPP for normal mucosa was 48, LGD was 38, HGD was 42, and malignancy was 123 (p < 0.01). The AIPP ROC curve between malignant versus non-malignant tissue was 0.96 (0.93-0.99). An AIPP value of 60 can differentiate malignancy with 87 % sensitivity and 90 % specificity. The mean β for normal tissue was 0.490, LGD was 0.379, HGD was 0.345, and cancer was 0.453 (p = 0.013), with a normal tissue mean rank of 6.5 compared to 2.5 for HGD (p = 0.029). CONCLUSIONS SHG signal intensity can differentiate malignant from non-malignant colonic polyp tissue with high sensitivity and specificity. Anisotropic polarization can discern HGD from normal colonic polyp tissue. SHG can thus distinguish both HGD and malignant lesions in an objective numeric fashion, without contrast agents or interpretation skills. SHG could be incorporated into endoscopy equipment to enhance white light endoscopy.
Collapse
Affiliation(s)
- John W Birk
- Division of Gastroenterology and Hepatology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030-1845, USA,
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Improvement in digestive oncology will require the creation of multidisciplinary teams. Expert gastroenterologists who are super-specializing in digestive oncology (onco-gastroenterologists) should be in the center of such highly qualified teams. To fulfill this role the onco-gastroenterologist will need adequate training in all aspects of diagnostic and therapeutic endoscopic activities related to digestive cancer. This article reflects the spectrum of expertise that will be necessary to guarantee optimal service.
Collapse
Affiliation(s)
- Guido N J Tytgat
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Ding S, Blue RE, Chen Y, Scull B, Lund PK, Morgan D. Molecular Imaging of Gastric Neoplasia with Near-Infrared Fluorescent Activatable Probes. Mol Imaging 2012. [DOI: 10.2310/7290.2012.00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Shengli Ding
- From the Department of Cell and Molecular Physiology and Division of Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Biological Sciences, Kent State University, Kent, OH; and Department of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN
| | - Randall Eric Blue
- From the Department of Cell and Molecular Physiology and Division of Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Biological Sciences, Kent State University, Kent, OH; and Department of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN
| | - Yijing Chen
- From the Department of Cell and Molecular Physiology and Division of Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Biological Sciences, Kent State University, Kent, OH; and Department of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN
| | - Brooks Scull
- From the Department of Cell and Molecular Physiology and Division of Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Biological Sciences, Kent State University, Kent, OH; and Department of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN
| | - Pauline Kay Lund
- From the Department of Cell and Molecular Physiology and Division of Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Biological Sciences, Kent State University, Kent, OH; and Department of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN
| | - Douglas Morgan
- From the Department of Cell and Molecular Physiology and Division of Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Biological Sciences, Kent State University, Kent, OH; and Department of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
9
|
Galloro G. High technology imaging in digestive endoscopy. World J Gastrointest Endosc 2012; 4:22-7. [PMID: 22347528 PMCID: PMC3280351 DOI: 10.4253/wjge.v4.i2.22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 11/21/2011] [Accepted: 02/06/2012] [Indexed: 02/05/2023] Open
Abstract
A thorough endoscopic visualization of the digestive mucosa is essential for reaching an accurate diagnosis and to treat the different lesions. Standard white light endoscopes permit a good mucosa examination but, nowadays, the introduction of powerful endoscopic instrumentations increased ability to analyze the finest details. By applying dyes and zoom-magnification endoscopy further architectural detail of the mucosa can be elucidated. New computed virtual chromoendoscopy have further enhanced optical capabilities for the evaluation of submucosal vascolar pattern. Recently, confocal endomicroscopy and endocytoscopy were proposed for the study of ultrastructural mucosa details. Because of the technological contents of powerful instrumentation, a good knowledge of implemented technologies is mandatory for the endoscopist, nowadays. Nevertheless, there is a big confusion about this topic. We will try to explain these technologies and to clarify this terminology.
Collapse
Affiliation(s)
- Giuseppe Galloro
- Giuseppe Galloro, Department of General, Geriatric, Oncologic Surgery and Advanced Technologies, Unit of Surgical Digestive Endoscopy, University of Naples "Federico II" - School of Medicine, Via S Pansini, 5 80131 Napoli, Italy
| |
Collapse
|
10
|
Meng F, Alpini G. Confocal laser endomicroscopy in dynamic evaluation of hepatic apoptosis in vivo. Am J Physiol Gastrointest Liver Physiol 2011; 301:G762-3. [PMID: 21868634 DOI: 10.1152/ajpgi.00310.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Fanyin Meng
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M HSC COM and Scott & White Hospital
- Research & Education, Scott & White Hospital; and
| | - Gianfranco Alpini
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M HSC COM and Scott & White Hospital
- Research, Central Texas Veterans Health Care System, Temple, Texas
| |
Collapse
|
11
|
Winawer SJ, Pasricha PJ, Schmiegel W, Sinicrope FA, Sung J, Seufferlein T, Kassem AM, Malekzadeh R, Kurtz RC, Classen M, Tytgat GN. The future role of the gastroenterologist in digestive oncology: an international perspective. Gastroenterology 2011; 141:e13-21. [PMID: 21871854 DOI: 10.1053/j.gastro.2011.08.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sidney J Winawer
- Weill Medical College, Cornell University, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rodriguez-Diaz E, Bigio IJ, Singh SK. INTEGRATED OPTICAL TOOLS FOR MINIMALLY INVASIVE DIAGNOSIS AND TREATMENT AT GASTROINTESTINAL ENDOSCOPY. ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING 2011; 27:249-256. [PMID: 21152112 PMCID: PMC2997708 DOI: 10.1016/j.rcim.2010.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Over the past two decades, the bulk of gastrointestinal (GI) endoscopic procedures has shifted away from diagnostic and therapeutic interventions for symptomatic disease toward cancer prevention in asymptomatic patients. This shift has resulted largely from a decrease in the incidence of peptic ulcer disease in the era of antisecretory medications coupled with emerging evidence for the efficacy of endoscopic detection and eradication of dysplasia, a histopathological biomarker widely accepted as a precursor to cancer. This shift has been accompanied by a drive toward minimally-invasive, in situ optical diagnostic technologies that help assess the mucosa for cellular changes that relate to dysplasia. Two competing but complementary approaches have been pursued. The first approach is based on broad-view targeting of "areas of interest" or "red flags." These broad-view technologies include standard white light endoscopy (WLE), high-definition endoscopy (HD), and "electronic" chromoendoscopy (narrow-band-type imaging). The second approach is based on multiple small area or point-source (meso/micro) measurements, which can be either machine (spectroscopy) or human-interpreted (endomicroscopy, magnification endoscopy), much as histopatholgy slides are. In this paper we present our experience with the development and testing of a set of familiar but "smarter" standard tissue-sampling tools that can be routinely employed during screening/surveillance endoscopy. These tools have been designed to incorporate fiberoptic probes that can mediate spectroscopy or endomicroscopy. We demonstrate the value of such tools by assessing their preliminary performance from several ongoing clinical studies. Our results have shown promise for a new generation of integrated optical tools for a variety of screening/surveillance applications during GI endoscopy. Integrated devices should prove invaluable for dysplasia surveillance strategies that currently result in large numbers of benign biopsies, which are of little clinical consequence, including screening for colorectal polyps and surveillance of "flat" dysplasia such as Barrett's esophagus and chronic colitis due to inflammatory bowel diseases.
Collapse
|
13
|
Sheth RA, Mahmood U. Optical molecular imaging and its emerging role in colorectal cancer. Am J Physiol Gastrointest Liver Physiol 2010; 299:G807-20. [PMID: 20595618 PMCID: PMC3774281 DOI: 10.1152/ajpgi.00195.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 06/30/2010] [Indexed: 01/31/2023]
Abstract
Colorectal cancer remains a major cause of morbidity and mortality in the United States. The advent of molecular therapies targeted against specific, stereotyped cellular mutations that occur in this disease has ushered in new hope for treatment options. However, key questions regarding optimal dosing schedules, dosing duration, and patient selection remain unanswered. In this review, we describe how recent advances in molecular imaging, specifically optical molecular imaging with fluorescent probes, offer potential solutions to these questions. We begin with an overview of optical molecular imaging, including discussions on the various methods of design for fluorescent probes and the clinically relevant imaging systems that have been built to image them. We then focus on the relevance of optical molecular imaging to colorectal cancer. We review the most recent data on how this imaging modality has been applied to the measurement of treatment efficacy for currently available as well as developmental molecularly targeted therapies. We then conclude with a discussion on how this imaging approach has already begun to be translated clinically for human use.
Collapse
Affiliation(s)
- Rahul A Sheth
- Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | |
Collapse
|
14
|
Kantsevoy SV, Adler DG, Conway JD, Diehl DL, Farraye FA, Kaul V, Kethu SR, Kwon RS, Mamula P, Rodriguez SA, Tierney WM. Confocal laser endomicroscopy. Gastrointest Endosc 2009; 70:197-200. [PMID: 19559426 DOI: 10.1016/j.gie.2009.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 04/03/2009] [Indexed: 12/11/2022]
|