1
|
Gressel J, Mbogo P, Kanampiu F, Christou P. Maize yields have stagnated in sub-Sahara Africa: a possible transgenic solution to weed, pathogen and insect constraints. PEST MANAGEMENT SCIENCE 2024; 80:4156-4162. [PMID: 38843468 DOI: 10.1002/ps.8224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 08/10/2024]
Abstract
Despite major breeding efforts by various national and international agencies, yields for the ~40 million hectares of maize, the major food crop in sub-Saharan Africa, have stagnated at <2 tons/ha/year for the past decade, one-third the global average. Breeders have succeeded in breeding increased yield with a modicum of tolerance to some single-weed or pathogen stresses. There has been minimal adoption of these varieties because introgressing polygenic yield and tolerance traits into locally adapted material is very challenging. Multiple traits to deal with pests (weeds, pathogens, and insects) are needed for farmer acceptance, because African fields typically encounter multiple pest constraints. Also, maize has no inherent resistance to some of these pest constraints, rendering them intractable to traditional breeding. The proposed solution is to simultaneously engineer multiple traits into one genetic locus. The dominantly inherited multi-pest resistance trait single locus can be bred simply into locally adapted, elite high-yielding material, and would be valuable for farmers, vastly increasing maize yields, and allowing for more than regional maize sufficiency. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonathan Gressel
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Paul Christou
- University of Lleida & Agrotecnio CERCA Center, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| |
Collapse
|
2
|
Xia H, Xia X, Guo M, Liu W, Tang G. The MAP kinase FvHog1 regulates FB1 synthesis and Ca 2+ homeostasis in Fusarium verticillioides. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134682. [PMID: 38795487 DOI: 10.1016/j.jhazmat.2024.134682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The high osmolarity glycerol 1 mitogen-activated protein kinase (Hog1-MAPK) cascade genes are important for diverse biological processes. The activated Hog1 upon multiple environmental stress stimuli enters into the nucleus where it directly phosphorylates transcription factors to regulate various physiological processes in phytopathogenic fungi. However, their roles have not been well-characterized in Fusarium verticillioides. In this study, FvHog1 is identified and functionally analyzed. The findings reveal that the phosphorylation level and nuclear localization of FvHog1 are increased in Fumonisin B1 (FB1)-inducing condition to regulate the expression of FB1 biosynthesis FUM genes. More importantly, the deletion mutants of Hog1-MAPK pathway show increased sensitivity to Ca2+ stress and elevated intracellular Ca2+ content. The phosphorylation level and nuclear localization of FvHog1 are increased with Ca2+ treatment. Furthermore, our results show that FvHog1 can directly phosphorylate Ca2+-responsive zinc finger transcription factor 1 (FvCrz1) to regulate Ca2+ homeostasis. In conclusion, our findings indicate that FvHog1 is required for FB1 biosynthesis, pathogenicity and Ca2+ homeostasis in F. verticillioides. It provides a theoretical basis for effective prevention and control maize ear and stalk rot disease.
Collapse
Affiliation(s)
- Haoxue Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xinyao Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guangfei Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Gandham P, Rajasekaran K, Sickler C, Mohan H, Gilbert M, Baisakh N. MicroRNA (miRNA) profiling of maize genotypes with differential response to Aspergillus flavus implies zma-miR156-squamosa promoter binding protein (SBP) and zma-miR398/zma-miR394-F -box combinations involved in resistance mechanisms. STRESS BIOLOGY 2024; 4:26. [PMID: 38727957 PMCID: PMC11087424 DOI: 10.1007/s44154-024-00158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/05/2024] [Indexed: 05/13/2024]
Abstract
Maize (Zea mays), a major food crop worldwide, is susceptible to infection by the saprophytic fungus Aspergillus flavus that can produce the carcinogenic metabolite aflatoxin (AF) especially under climate change induced abiotic stressors that favor mold growth. Several studies have used "-omics" approaches to identify genetic elements with potential roles in AF resistance, but there is a lack of research identifying the involvement of small RNAs such as microRNAs (miRNAs) in maize-A. flavus interaction. In this study, we compared the miRNA profiles of three maize lines (resistant TZAR102, moderately resistant MI82, and susceptible Va35) at 8 h, 3 d, and 7 d after A. flavus infection to investigate possible regulatory antifungal role of miRNAs. A total of 316 miRNAs (275 known and 41 putative novel) belonging to 115 miRNA families were identified in response to the fungal infection across all three maize lines. Eighty-two unique miRNAs were significantly differentially expressed with 39 miRNAs exhibiting temporal differential regulation irrespective of the maize genotype, which targeted 544 genes (mRNAs) involved in diverse molecular functions. The two most notable biological processes involved in plant immunity, namely cellular responses to oxidative stress (GO:00345990) and reactive oxygen species (GO:0034614) were significantly enriched in the resistant line TZAR102. Coexpression network analysis identified 34 hubs of miRNA-mRNA pairs where nine hubs had a node in the module connected to their target gene with potentially important roles in resistance/susceptible response of maize to A. flavus. The miRNA hubs in resistance modules (TZAR102 and MI82) were mostly connected to transcription factors and protein kinases. Specifically, the module of miRNA zma-miR156b-nb - squamosa promoter binding protein (SBP), zma-miR398a-3p - SKIP5, and zma-miR394a-5p - F-box protein 6 combinations in the resistance-associated modules were considered important candidates for future functional studies.
Collapse
Affiliation(s)
- Prasad Gandham
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Kanniah Rajasekaran
- Food and Feed Safety Research Unit, Southern Regional Research Center, USDA-ARS, New Orleans, LA, 70726, USA.
| | - Christine Sickler
- Food and Feed Safety Research Unit, Southern Regional Research Center, USDA-ARS, New Orleans, LA, 70726, USA
| | - Harikrishnan Mohan
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Matthew Gilbert
- Food and Feed Safety Research Unit, Southern Regional Research Center, USDA-ARS, New Orleans, LA, 70726, USA
| | - Niranjan Baisakh
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
4
|
Mierziak J, Wojtasik W. Epigenetic weapons of plants against fungal pathogens. BMC PLANT BIOLOGY 2024; 24:175. [PMID: 38443788 PMCID: PMC10916060 DOI: 10.1186/s12870-024-04829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
In the natural environment, plants face constant exposure to biotic stress caused by fungal attacks. The plant's response to various biotic stresses relies heavily on its ability to rapidly adjust the transcriptome. External signals are transmitted to the nucleus, leading to activation of transcription factors that subsequently enhance the expression of specific defense-related genes. Epigenetic mechanisms, including histone modifications and DNA methylation, which are closely linked to chromatin states, regulate gene expression associated with defense against biotic stress. Additionally, chromatin remodelers and non-coding RNA play a significant role in plant defense against stressors. These molecular modifications enable plants to exhibit enhanced resistance and productivity under diverse environmental conditions. Epigenetic mechanisms also contribute to stress-induced environmental epigenetic memory and priming in plants, enabling them to recall past molecular experiences and utilize this stored information for adaptation to new conditions. In the arms race between fungi and plants, a significant aspect is the cross-kingdom RNAi mechanism, whereby sRNAs can traverse organismal boundaries. Fungi utilize sRNA as an effector molecule to silence plant resistance genes, while plants transport sRNA, primarily through extracellular vesicles, to pathogens in order to suppress virulence-related genes. In this review, we summarize contemporary knowledge on epigenetic mechanisms of plant defense against attack by pathogenic fungi. The role of epigenetic mechanisms during plant-fungus symbiotic interactions is also considered.
Collapse
Affiliation(s)
- Justyna Mierziak
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63, Wroclaw, 51-148, Poland
| | - Wioleta Wojtasik
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63, Wroclaw, 51-148, Poland.
| |
Collapse
|
5
|
Quiroz-Figueroa FR, Cruz-Mendívil A, Ibarra-Laclette E, García-Pérez LM, Gómez-Peraza RL, Hanako-Rosas G, Ruíz-May E, Santamaría-Miranda A, Singh RK, Campos-Rivero G, García-Ramírez E, Narváez-Zapata JA. Cell wall-related genes and lignin accumulation contribute to the root resistance in different maize ( Zea mays L.) genotypes to Fusarium verticillioides (Sacc.) Nirenberg infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1195794. [PMID: 37441182 PMCID: PMC10335812 DOI: 10.3389/fpls.2023.1195794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023]
Abstract
Introduction The fungal pathogen Fusarium verticillioides (Sacc.) Nirenberg (Fv) causes considerable agricultural and economic losses and is harmful to animal and human health. Fv can infect maize throughout its long agricultural cycle, and root infection drastically affects maize growth and yield. Methods The root cell wall is the first physical and defensive barrier against soilborne pathogens such as Fv. This study compares two contrasting genotypes of maize (Zea mays L.) roots that are resistant (RES) or susceptible (SUS) to Fv infection by using transcriptomics, fluorescence, scanning electron microscopy analyses, and ddPCR. Results Seeds were infected with a highly virulent local Fv isolate. Although Fv infected both the RES and SUS genotypes, infection occurred faster in SUS, notably showing a difference of three to four days. In addition, root infections in RES were less severe in comparison to SUS infections. Comparative transcriptomics (rate +Fv/control) were performed seven days after inoculation (DAI). The analysis of differentially expressed genes (DEGs) in each rate revealed 733 and 559 unique transcripts that were significantly (P ≤0.05) up and downregulated in RES (+Fv/C) and SUS (+Fv/C), respectively. KEGG pathway enrichment analysis identified coumarin and furanocoumarin biosynthesis, phenylpropanoid biosynthesis, and plant-pathogen interaction pathways as being highly enriched with specific genes involved in cell wall modifications in the RES genotype, whereas the SUS genotype mainly displayed a repressed plant-pathogen interaction pathway and did not show any enriched cell wall genes. In particular, cell wall-related gene expression showed a higher level in RES than in SUS under Fv infection. Analysis of DEG abundance made it possible to identify transcripts involved in response to abiotic and biotic stresses, biosynthetic and catabolic processes, pectin biosynthesis, phenylpropanoid metabolism, and cell wall biosynthesis and organization. Root histological analysis in RES showed an increase in lignified cells in the sclerenchymatous hypodermis zone during Fv infection. Discussion These differences in the cell wall and lignification could be related to an enhanced degradation of the root hairs and the epidermis cell wall in SUS, as was visualized by SEM. These findings reveal that components of the root cell wall are important against Fv infection and possibly other soilborne phytopathogens.
Collapse
Affiliation(s)
- Francisco Roberto Quiroz-Figueroa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR)—Unidad Sinaloa, Guasave, Mexico
| | - Abraham Cruz-Mendívil
- Consejo Nacional de Ciencia y Tecnología (CONACYT)-Instituto Politécnico Nacional, (CIIDIR) Unidad Sinaloa, Guasave, Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic®, Xalapa, Mexico
| | - Luz María García-Pérez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR)—Unidad Sinaloa, Guasave, Mexico
| | - Rosa Luz Gómez-Peraza
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR)—Unidad Sinaloa, Guasave, Mexico
| | - Greta Hanako-Rosas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic®, Xalapa, Mexico
| | - Eliel Ruíz-May
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic®, Xalapa, Mexico
| | - Apolinar Santamaría-Miranda
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR)—Unidad Sinaloa, Guasave, Mexico
| | - Rupesh Kumar Singh
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Gerardo Campos-Rivero
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR)—Unidad Sinaloa, Guasave, Mexico
| | - Elpidio García-Ramírez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | |
Collapse
|
6
|
Qu Q, Liu N, Su Q, Liu X, Jia H, Liu Y, Sun M, Cao Z, Dong J. MicroRNAs involved in the trans-kingdom gene regulation in the interaction of maize kernels and Fusarium verticillioides. Int J Biol Macromol 2023:125046. [PMID: 37245767 DOI: 10.1016/j.ijbiomac.2023.125046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Maize ear rot is a widespread disease and the main pathogen is Fusarium verticillioides. Plant microRNAs (miRNAs) have great effects on disease resistance and it has been reported that maize miRNA participates in defense responses in maize ear rot. However, the trans-kingdom regulation of miRNAs between maize and F. verticillioides remains uncharacterized. In this study, the relationship between miRNA-like RNAs (milRNAs) of F. verticillioides and pathogenicity was investigated, followed by sRNA analysis and degradome sequencing of miRNA profiles and the target genes of maize and F. verticillioides after inoculation. It was found that the milRNA biogenesis positively regulated the pathogenicity of F. verticillioides by knocking out the gene FvDicer2-encoded Dicer-like protein in F. verticillioides. Following inoculation with F. verticillioides, 284 known and 6571 novel miRNAs were obtained in maize, including 28 miRNAs differentially expressed at multiple time points. The target genes of maize differentially expressed miRNAs in F. verticillioides mediated multiple pathways, including autophagy and MAPK signaling pathway. Fifty-one novel F. verticillioides milRNAs were predicted to target 333 genes in maize involved in MAPK signaling pathways, plant hormone signaling transduction and plant-pathogen interaction pathways. Additionally, the miR528b-5p in maize targeted the mRNA of FvTTP which encoded a twice transmembrane protein in F. verticillioides. The FvTTP-knockout mutants displayed decreased pathogenicity and reduced synthesis of fumonisins. Thus, by interfering with the translation of FvTTP, the miR528b-5p inhibited F. verticillioides infection. These findings suggested a novel function of miR528 in resisting F. verticillioides infection. The miRNAs identified in this research and their putative target genes can be used to further elucidate the trans-kingdom functions of microRNAs in plant pathogen interaction.
Collapse
Affiliation(s)
- Qing Qu
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China
| | - Ning Liu
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China
| | - Qianfu Su
- Jilin Academy of Agricultural Sciences, Jilin 130033, China
| | - Xinfang Liu
- Corn Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Hui Jia
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China
| | - Yuwei Liu
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China
| | - Manli Sun
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China
| | - Zhiyan Cao
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China.
| | - Jingao Dong
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China.
| |
Collapse
|
7
|
Wang S, Wang X, Chen J. Identification of miRNAs Involved in Maize-Induced Systemic Resistance Primed by Trichoderma harzianum T28 against Cochliobolus heterostrophus. J Fungi (Basel) 2023; 9:278. [PMID: 36836392 PMCID: PMC9964586 DOI: 10.3390/jof9020278] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
microRNAs (miRNAs) are known to play important roles in the immune response to pathogen infection in different plants. Further, Trichoderma strains are able to activate plant defense responses against pathogen attacks. However, little is known about the involvement of miRNAs in the defense response primed by Trichoderma strains. To explore the miRNAs sensitive to priming by Trichoderma, we studied the small RNAs and transcriptome changes in maize leaves that were systemically induced by seed treatment with Trichoderma harzianum (strain T28) against Cochliobolus heterostrophus (C. heterostrophus) infection in leaves. Through analysis of the sequencing data, 38 differentially expressed miRNAs (DEMs) and 824 differentially expressed genes (DEGs) were identified. GO and KEGG analyses of DEGs demonstrated that genes involved in the plant hormone signal transduction pathway and oxidation-reduction process were significantly enriched. In addition, 15 miRNA-mRNA interaction pairs were identified through the combined analysis of DEMs and DEGs. These pairs were supposed to play roles in the maize resistance primed by T. harzianum T28 to C. heterostrophus, in which miR390, miR169j, miR408b, miR395a/p, and novel miRNA (miRn5231) were more involved in the induction of maize resistance. This study provided valuable information for understanding the regulatory role of miRNA in the T. harzianum primed defense response.
Collapse
Affiliation(s)
- Shaoqing Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinhua Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
8
|
Xu Y, Wang R, Ma P, Cao J, Cao Y, Zhou Z, Li T, Wu J, Zhang H. A novel maize microRNA negatively regulates resistance to Fusarium verticillioides. MOLECULAR PLANT PATHOLOGY 2022; 23:1446-1460. [PMID: 35700097 PMCID: PMC9452762 DOI: 10.1111/mpp.13240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/02/2022] [Accepted: 05/25/2022] [Indexed: 05/21/2023]
Abstract
Although microRNAs (miRNAs) regulate the defence response against multiple pathogenic fungi in diverse plant species, few efforts have been devoted to deciphering the involvement of miRNA in resistance to Fusarium verticillioides, a major pathogenic fungus affecting maize production. In this study, we discovered a novel F. verticillioides-responsive miRNA designated zma-unmiR4 in maize kernels. The expression of zma-unmiR4 was significantly repressed in the resistant maize line but induced in the susceptible lines upon exposure to F. verticillioides exposure, whereas its target gene ZmGA2ox4 exhibited the opposite pattern of expression. Heterologous overexpression of zma-unmiR4 in Arabidopsis resulted in enhanced growth and compromised resistance to F. verticillioides. By contrast, transgenic plants overexpressing ZmGA2ox4 or the homologue AtGA2ox7 showed impaired growth and enhanced resistance to F. verticillioides. Moreover, zma-unmiR4-mediated suppression of AtGA2ox7 disturbed the accumulation of bioactive gibberellin (GA) in transgenic plants and perturbed the expression of a set of defence-related genes in response to F. verticillioides. Exogenous application of GA or a GA biosynthesis inhibitor modulated F. verticillioides resistance in different plants. Taken together, our results suggest that the zma-unmiR4-ZmGA2ox4 module might act as a major player in balancing growth and resistance to F. verticillioides in maize.
Collapse
Affiliation(s)
- Yufang Xu
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Renjie Wang
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Peipei Ma
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Jiansheng Cao
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Yan Cao
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Zijian Zhou
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Tao Li
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Jianyu Wu
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
| | - Huiyong Zhang
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
9
|
Ma P, Li H, Liu E, He K, Song Y, Dong C, Wang Z, Zhang X, Zhou Z, Xu Y, Wu J, Zhang H. Evaluation and Identification of Resistance Lines and QTLs of Maize to Seedborne Fusarium verticillioides. PLANT DISEASE 2022; 106:2066-2073. [PMID: 35259305 DOI: 10.1094/pdis-10-21-2247-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Internal fungal contamination in cereal grains may affect plant growth and result in health concerns for humans and animals. Fusarium verticillioides is a seedborne fungus that can systemically infect maize. However, few efforts had been devoted to studying the genetics of maize resistance to seedborne F. verticillioides. In this study, we developed a disease evaluation method to identify resistance to seedborne F. verticillioides in maize, by which a set of 121 diverse maize inbred lines were evaluated. A 160 F10-generation recombinant inbred line (RIL) population derived from a cross of the resistant (BT-1) and susceptible (N6) inbred line was further used to identify major quantitative trait loci (QTLs) for seedborne F. verticillioides resistance. Eighteen inbred lines with a high resistance to seedborne F. verticillioides were characterized and could be used as potential germplasm resources for genetic improvement of maize resistance. Six QTLs with high heritability across multiple environments were detected on chromosomes 3, 4, 6, and 10, among which was a major QTL, qISFR4-1. Located on chromosome 4 at the interval of 12922609-13418025, qISFR4-1 could explain 16.63% of the total phenotypic variance. Distinct expression profiles of eight candidate genes in qISFR4-1 between BT-1 and N6 inbred lines suggested their pivotal regulatory roles in seedborne F. verticillioides resistance. Taken together, these results will improve our understanding of the resistant mechanisms of seedborne F. verticillioides and would provide valuable germplasm resources for disease resistance breeding in maize.
Collapse
Affiliation(s)
- Peipei Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Haojie Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Enpeng Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Kewei He
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yunxia Song
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Chaopei Dong
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhao Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuecai Zhang
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), 06600 Mexico DF, Mexico
| | - Zijian Zhou
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yufang Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianyu Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Huiyong Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
10
|
Srikakulam N, Guria A, Karanthamalai J, Murugesan V, Krishnan V, Sundaramoorthy K, Saha S, Singh R, Victorathisayam T, Rajapriya V, Sridevi G, Pandi G. An Insight Into Pentatricopeptide-Mediated Chloroplast Necrosis via microRNA395a During Rhizoctonia solani Infection. Front Genet 2022; 13:869465. [PMID: 35706449 PMCID: PMC9189367 DOI: 10.3389/fgene.2022.869465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Sheath blight (ShB) disease, caused by Rhizoctonia solani, is one of the major biotic stress-oriented diseases that adversely affect the rice productivity worldwide. However, the regulatory mechanisms are not understood yet comprehensively. In the current study, we had investigated the potential roles of miRNAs in economically important indica rice variety Pusa Basmati-1 upon R. solani infection by carrying out in-depth, high-throughput small RNA sequencing with a total data size of 435 million paired-end raw reads from rice leaf RNA samples collected at different time points. Detailed data analysis revealed a total of 468 known mature miRNAs and 747 putative novel miRNAs across all the libraries. Target prediction and Gene Ontology functional analysis of these miRNAs were found to be unraveling various cellular, molecular, and biological functions by targeting various plant defense-related genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to validate the miRNAs and their putative target genes. Out of the selected miRNA-specific putative target genes, miR395a binding and its cleavage site on pentatricopeptide were determined by 5’ RACE-PCR. It might be possible that R. solani instigated chloroplast degradation by modulating the pentatricopeptide which led to increased susceptibility to fungal infection.
Collapse
|
11
|
Zhang W, Yuan Q, Wu Y, Zhang J, Nie J. Genome-Wide Identification and Characterization of the CC-NBS-LRR Gene Family in Cucumber ( Cucumis sativus L.). Int J Mol Sci 2022; 23:ijms23095048. [PMID: 35563438 PMCID: PMC9099878 DOI: 10.3390/ijms23095048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
The NBS-LRR (NLR) gene family plays a pivotal role in regulating disease defense response in plants. Cucumber is one of the most important vegetable crops in the world, and various plant diseases, including powdery mildew (PM), cause severe losses in both cucumber productivity and quality annually. To characterize and understand the role of the CC-NBS-LRR(CNL) family of genes in disease defense response in cucumber plants, we performed bioinformatical analysis to characterize these genes systematically. We identified 33 members of the CNL gene family in cucumber plants, and they are distributed on each chromosome with chromosome 4 harboring the largest cluster of five different genes. The corresponding CNL family member varies in the number of amino acids and exons, molecular weight, theoretical isoelectric point (pI) and subcellular localization. Cis-acting element analysis of the CNL genes reveals the presence of multiple phytohormone, abiotic and biotic responsive elements in their promoters, suggesting that these genes might be responsive to plant hormones and stress. Phylogenetic and synteny analysis indicated that the CNL proteins are conserved evolutionarily in different plant species, and they can be divided into four subfamilies based on their conserved domains. MEME analysis and multiple sequence alignment showed that conserved motifs exist in the sequence of CNLs. Further DNA sequence analysis suggests that CsCNL genes might be subject to the regulation of different miRNAs upon PM infection. By mining available RNA-seq data followed by real-time quantitative PCR (qRT-PCR) analysis, we characterized expression patterns of the CNL genes, and found that those genes exhibit a temporospatial expression pattern, and their expression is also responsive to PM infection, ethylene, salicylic acid, and methyl jasmonate treatment in cucumber plants. Finally, the CNL genes targeted by miRNAs were predicted in cucumber plants. Our results in this study provided some basic information for further study of the functions of the CNL gene family in cucumber plants.
Collapse
Affiliation(s)
- Wanlu Zhang
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China
| | - Qi Yuan
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China
| | - Yiduo Wu
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
| | - Jing Zhang
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
| | - Jingtao Nie
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China
- Correspondence:
| |
Collapse
|
12
|
Cao A, de la Fuente M, Gesteiro N, Santiago R, Malvar RA, Butrón A. Genomics and Pathways Involved in Maize Resistance to Fusarium Ear Rot and Kernel Contamination With Fumonisins. FRONTIERS IN PLANT SCIENCE 2022; 13:866478. [PMID: 35586219 PMCID: PMC9108495 DOI: 10.3389/fpls.2022.866478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Fusarium verticillioides is a causal agent of maize ear rot and produces fumonisins, which are mycotoxins that are toxic to animals and humans. In this study, quantitative trait loci (QTLs) and bulk-segregant RNA-seq approaches were used to uncover genomic regions and pathways involved in resistance to Fusarium ear rot (FER) and to fumonisin accumulation in maize kernels. Genomic regions at bins 4.07-4.1, 6-6.01, 6.04-6.05, and 8.05-8.08 were related to FER resistance and/or reduced fumonisin levels in kernels. A comparison of transcriptomes between resistant and susceptible inbred bulks 10 days after inoculation with F. verticillioides revealed 364 differentially expressed genes (DEGs). In the resistant inbred bulks, genes involved in sink metabolic processes such as fatty acid and starch biosynthesis were downregulated, as well as those involved in phytosulfokine signaling and many other genes involved in cell division; while genes involved in secondary metabolism and compounds/processes related to resistance were upregulated, especially those related to cell wall biosynthesis/rearrangement and flavonoid biosynthesis. These trends are indicative of a growth-defense trade-off. Among the DEGs, Zm00001d053603, Zm00001d035562, Zm00001d037810, Zm00001d037921, and Zm00001d010840 were polymorphic between resistant and susceptible bulks, were located in the confidence intervals of detected QTLs, and showed large differences in transcript levels between the resistant and susceptible bulks. Thus, they were identified as candidate genes involved in resistance to FER and/or reduced fumonisin accumulation.
Collapse
Affiliation(s)
- Ana Cao
- Misión Biológica de Galicia (CSIC), Pontevedra, Spain
| | | | | | - Rogelio Santiago
- Misión Biológica de Galicia (CSIC), Pontevedra, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Pontevedra, Spain
| | - Rosa Ana Malvar
- Misión Biológica de Galicia (CSIC), Pontevedra, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Pontevedra, Spain
| | - Ana Butrón
- Misión Biológica de Galicia (CSIC), Pontevedra, Spain
| |
Collapse
|
13
|
Yang X, Zhang L, Yang Y, Schmid M, Wang Y. miRNA Mediated Regulation and Interaction between Plants and Pathogens. Int J Mol Sci 2021; 22:ijms22062913. [PMID: 33805611 PMCID: PMC7999934 DOI: 10.3390/ijms22062913] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Plants have evolved diverse molecular mechanisms that enable them to respond to a wide range of pathogens. It has become clear that microRNAs, a class of short single-stranded RNA molecules that regulate gene expression at the transcriptional or post-translational level, play a crucial role in coordinating plant-pathogen interactions. Specifically, miRNAs have been shown to be involved in the regulation of phytohormone signals, reactive oxygen species, and NBS-LRR gene expression, thereby modulating the arms race between hosts and pathogens. Adding another level of complexity, it has recently been shown that specific lncRNAs (ceRNAs) can act as decoys that interact with and modulate the activity of miRNAs. Here we review recent findings regarding the roles of miRNA in plant defense, with a focus on the regulatory modes of miRNAs and their possible applications in breeding pathogen-resistance plants including crops and trees. Special emphasis is placed on discussing the role of miRNA in the arms race between hosts and pathogens, and the interaction between disease-related miRNAs and lncRNAs.
Collapse
Affiliation(s)
- Xiaoqian Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.Y.); (L.Z.); (Y.Y.); (M.S.)
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lichun Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.Y.); (L.Z.); (Y.Y.); (M.S.)
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuzhang Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.Y.); (L.Z.); (Y.Y.); (M.S.)
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Markus Schmid
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.Y.); (L.Z.); (Y.Y.); (M.S.)
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Yanwei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.Y.); (L.Z.); (Y.Y.); (M.S.)
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62338105
| |
Collapse
|