1
|
Wang L, Lu Y, Li D, Zhou Y, Yu L, Mesa Eguiagaray I, Campbell H, Li X, Theodoratou E. The landscape of the methodology in drug repurposing using human genomic data: a systematic review. Brief Bioinform 2024; 25:bbad527. [PMID: 38279645 PMCID: PMC10818097 DOI: 10.1093/bib/bbad527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 01/28/2024] Open
Abstract
The process of drug development is expensive and time-consuming. In contrast, drug repurposing can be introduced to clinical practice more quickly and at a reduced cost. Over the last decade, there has been a significant expansion of large biobanks that link genomic data to electronic health record data, public availability of various databases containing biological and clinical information and rapid development of novel methodologies and algorithms in integrating different sources of data. This review aims to provide a thorough summary of different strategies that utilize genomic data to seek drug-repositioning opportunities. We searched MEDLINE and EMBASE databases to identify eligible studies up until 1 May 2023, with a total of 102 studies finally included after two-step parallel screening. We summarized commonly used strategies for drug repurposing, including Mendelian randomization, multi-omic-based and network-based studies and illustrated each strategy with examples, as well as the data sources implemented. By leveraging existing knowledge and infrastructure to expedite the drug discovery process and reduce costs, drug repurposing potentially identifies new therapeutic uses for approved drugs in a more efficient and targeted manner. However, technical challenges when integrating different types of data and biased or incomplete understanding of drug interactions are important hindrances that cannot be disregarded in the pursuit of identifying novel therapeutic applications. This review offers an overview of drug repurposing methodologies, providing valuable insights and guiding future directions for advancing drug repurposing studies.
Collapse
Affiliation(s)
- Lijuan Wang
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Lu
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Doudou Li
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yajing Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lili Yu
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ines Mesa Eguiagaray
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Xue Li
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, The University of Edinburgh MRC Institute of Genetics and Cancer, Edinburgh, UK
| |
Collapse
|
2
|
Sánchez-Valle J, Valencia A. Molecular bases of comorbidities: present and future perspectives. Trends Genet 2023; 39:773-786. [PMID: 37482451 DOI: 10.1016/j.tig.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
Co-occurrence of diseases decreases patient quality of life, complicates treatment choices, and increases mortality. Analyses of electronic health records present a complex scenario of comorbidity relationships that vary by age, sex, and cohort under study. The study of similarities between diseases using 'omics data, such as genes altered in diseases, gene expression, proteome, and microbiome, are fundamental to uncovering the origin of, and potential treatment for, comorbidities. Recent studies have produced a first generation of genetic interpretations for as much as 46% of the comorbidities described in large cohorts. Integrating different sources of molecular information and using artificial intelligence (AI) methods are promising approaches for the study of comorbidities. They may help to improve the treatment of comorbidities, including the potential repositioning of drugs.
Collapse
Affiliation(s)
- Jon Sánchez-Valle
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, 08034, Spain.
| | - Alfonso Valencia
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, 08034, Spain; ICREA, Barcelona, 08010, Spain.
| |
Collapse
|