1
|
Goss K, Horwitz EM. Single-cell multiomics to advance cell therapy. Cytotherapy 2025; 27:137-145. [PMID: 39530970 DOI: 10.1016/j.jcyt.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Single-cell RNA-sequencing (scRNAseq) was first introduced in 2009 and has evolved with many technological advancements over the last decade. Not only are there several scRNAseq platforms differing in many aspects, but there are also a large number of computational pipelines available for downstream analyses which are being developed at an exponential rate. Such computational data appear in many scientific publications in virtually every field of study; thus, investigators should be able to understand and interpret data in this rapidly evolving field. Here, we discuss key differences in scRNAseq platforms, crucial steps in scRNAseq experiments, standard downstream analyses and introduce newly developed multimodal approaches. We then discuss how single-cell omics has been applied to advance the field of cell therapy.
Collapse
Affiliation(s)
- Kyndal Goss
- Marcus Center for Advanced Cellular Therapy, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; Graduate Division of Biology and Biomedical Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA
| | - Edwin M Horwitz
- Marcus Center for Advanced Cellular Therapy, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Division of Biology and Biomedical Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA.
| |
Collapse
|
2
|
Jammes M, Tabasi A, Bach T, Ritter T. Healing the cornea: Exploring the therapeutic solutions offered by MSCs and MSC-derived EVs. Prog Retin Eye Res 2024; 105:101325. [PMID: 39709150 DOI: 10.1016/j.preteyeres.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Affecting a large proportion of the population worldwide, corneal disorders constitute a concerning health hazard associated to compromised eyesight or blindness for most severe cases. In the last decades, mesenchymal stem/stromal cells (MSCs) demonstrated promising abilities in improving symptoms associated to corneal diseases or alleviating these affections, especially through their anti-inflammatory, immunomodulatory and pro-regenerative properties. More recently, MSC therapeutic potential was shown to be mediated by the molecules they release, and particularly by their extracellular vesicles (EVs; MSC-EVs). Consequently, using MSC-EVs emerged as a pioneering strategy to mitigate the risks related to cell therapy while providing MSC therapeutic benefits. Despite the promises given by MSC- and MSC-EV-based approaches, many improvements are considered to optimize the therapeutic significance of these therapies. This review aspires to provide a comprehensive and detailed overview of current knowledge on corneal therapies involving MSCs and MSC-EVs, the strategies currently under evaluation, and the gaps remaining to be addressed for clinical implementation. From encapsulating MSCs or their EVs into biomaterials to enhance the ocular retention time to loading MSC-EVs with therapeutic drugs, a wide range of ground-breaking strategies are currently contemplated to lead to the safest and most effective treatments. Promising research initiatives also include diverse gene therapies and the targeting of specific cell types through the modification of the EV surface, paving the way for future therapeutic innovations. As one of the most important challenges, MSC-EV large-scale production strategies are extensively investigated and offer a wide array of possibilities to meet the needs of clinical applications.
Collapse
Affiliation(s)
- Manon Jammes
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Abbas Tabasi
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Trung Bach
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
3
|
Liu X, Wang H, Gao J. scIALM: A method for sparse scRNA-seq expression matrix imputation using the Inexact Augmented Lagrange Multiplier with low error. Comput Struct Biotechnol J 2024; 23:549-558. [PMID: 38274995 PMCID: PMC10809077 DOI: 10.1016/j.csbj.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a high-throughput sequencing technology that quantifies gene expression profiles of specific cell populations at the single-cell level, providing a foundation for studying cellular heterogeneity and patient pathological characteristics. It is effective for developmental, fertility, and disease studies. However, the cell-gene expression matrix of single-cell sequencing data is often sparse and contains numerous zero values. Some of the zero values derive from noise, where dropout noise has a large impact on downstream analysis. In this paper, we propose a method named scIALM for imputation recovery of sparse single-cell RNA data expression matrices, which employs the Inexact Augmented Lagrange Multiplier method to use sparse but clean (accurate) data to recover unknown entries in the matrix. We perform experimental analysis on four datasets, calling the expression matrix after Quality Control (QC) as the original matrix, and comparing the performance of scIALM with six other methods using mean squared error (MSE), mean absolute error (MAE), Pearson correlation coefficient (PCC), and cosine similarity (CS). Our results demonstrate that scIALM accurately recovers the original data of the matrix with an error of 10e-4, and the mean value of the four metrics reaches 4.5072 (MSE), 0.765 (MAE), 0.8701 (PCC), 0.8896 (CS). In addition, at 10%-50% random masking noise, scIALM is the least sensitive to the masking ratio. For downstream analysis, this study uses adjusted rand index (ARI) and normalized mutual information (NMI) to evaluate the clustering effect, and the results are improved on three datasets containing real cluster labels.
Collapse
Affiliation(s)
- Xiaohong Liu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Han Wang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingyang Gao
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Latunra AI, Heryanto H, Tahir D, Ardiansa A. Analytical insight into caffeine extraction from typica coffee leaves based on crystallinity enhancement, optical phonon vibration upshift, and morphological evolution. J Food Sci 2024; 89:9420-9432. [PMID: 39437161 DOI: 10.1111/1750-3841.17443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/01/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Caffeine extracted from callus cultures by in vitro technique induced from typica coffee (Coffea arabica L. var. typica) leaves was successfully carried out by a simple Soxhlet method. Analysis of X-ray diffraction patterns showed an increase in crystallinity fraction from leaves (13.56%) to callus (14.46%) and then to caffeine (39.18%). Crystallite size also varied, with average sizes of 18 ± 6, 69 ± 51, and 32.5 ± 17 nm for leaves, callus, and caffeine, respectively. Fourier transmission infrared absorption data confirmed the presence of hydroxyl (OH) groups bound to carbon (C─COH), indicating caffeine content. The high stability of the C─COH is indicated by the broad optical phonon vibrationsΔ ( L O - T O ) $\Delta ( {LO - TO} )$ of the leaves: 247 cm-1 to caffeine: 963 cm-1. Quantitative analysis of dielectric function and electron loss function intensity peaks of each sample showed that leaves efficiently capture and store light energy while caffeine has less potency. Scanning electron microscopy analysis showed irregular shapes of leaves, oval round shapes for callus, and rectangular crystals for caffeine due to crystal orientation during transformation and had a strong correlation with crystallinity fraction. Finally, the structure-based identification, chemistry, optical-dielectric function, and micro-surface properties have been fully studied, thus unmasking the phenomenon of slow transformation from leaves to caffeine form. PRACTICAL APPLICATION: The result of this study can be applied to uncover new methodologies related to the classification, and biotechnological utilization of callus culture based on structural properties, optical-dielectric function, and micro-surface analysis. Methodologically, the resulting callus culture provides a sustainable and controllable supply of plant material for caffeine extraction, thereby reducing traditional methods involving field-grown plants and avoiding the use of pesticides.
Collapse
Affiliation(s)
| | | | - Dahlang Tahir
- Physics Department, Hasanuddin University, Makassar, Indonesia
| | | |
Collapse
|
5
|
Alani M, Altarturih H, Pars S, Al-mhanawi B, Wolvetang EJ, Shaker MR. A Roadmap for Selecting and Utilizing Optimal Features in scRNA Sequencing Data Analysis for Stem Cell Research: A Comprehensive Review. Int J Stem Cells 2024; 17:347-362. [PMID: 38531607 PMCID: PMC11612217 DOI: 10.15283/ijsc23170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Stem cells and the cells they produce are unique because they vary from one cell to another. Traditional methods of studying cells often overlook these differences. However, the development of new technologies for studying individual cells has greatly changed biological research in recent years. Among these innovations, single-cell RNA sequencing (scRNA-seq) stands out. This technique allows scientists to examine the activity of genes in each cell, across thousands or even millions of cells. This makes it possible to understand the diversity of cells, identify new types of cells, and see how cells differ across different tissues, individuals, species, times, and conditions. This paper discusses the importance of scRNA-seq and the computational tools and software that are essential for analyzing the vast amounts of data generated by scRNA-seq studies. Our goal is to provide practical advice for bioinformaticians and biologists who are using scRNA-seq to study stem cells. We offer an overview of the scRNA-seq field, including the tools available, how they can be used, and how to present the results of these studies effectively. Our findings include a detailed overview and classification of tools used in scRNA-seq analysis, based on a review of 2,733 scientific publications. This review is complemented by information from the scRNA-tools database, which lists over 1,400 tools for analyzing scRNA-seq data. This database is an invaluable resource for researchers, offering a wide range of options for analyzing their scRNA-seq data.
Collapse
Affiliation(s)
- Maath Alani
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Hamza Altarturih
- Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
| | - Selin Pars
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Bahaa Al-mhanawi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Ernst J. Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Mohammed R. Shaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Singh S, Praveen A, Dudha N, Sharma VK, Bhadrecha P. Single-cell transcriptomics: a new frontier in plant biotechnology research. PLANT CELL REPORTS 2024; 43:294. [PMID: 39585480 DOI: 10.1007/s00299-024-03383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Single-cell transcriptomic techniques have ushered in a new era in plant biology, enabling detailed analysis of gene expression at the resolution of individual cells. This review delves into the transformative impact of these technologies on our understanding of plant development and their far-reaching implications for plant biotechnology. We present a comprehensive overview of the latest advancements in single-cell transcriptomics, emphasizing their application in elucidating complex cellular processes and developmental pathways in plants. By dissecting the heterogeneity of cell populations, single-cell technologies offer unparalleled insights into the intricate regulatory networks governing plant growth, differentiation, and response to environmental stimuli. This review covers the spectrum of single-cell approaches, from pioneering techniques such as single-cell RNA sequencing (scRNA-seq) to emerging methodologies that enhance resolution and accuracy. In addition to showcasing the technological innovations, we address the challenges and limitations associated with single-cell transcriptomics in plants. These include issues related to sample preparation, cell isolation, data complexity, and computational analysis. We propose strategies to mitigate these challenges, such as optimizing protocols for protoplast isolation, improving computational tools for data integration, and developing robust pipelines for data interpretation. Furthermore, we explore the practical applications of single-cell transcriptomics in plant biotechnology. These applications span from improving crop traits through precise genetic modifications to enhancing our understanding of plant-microbe interactions. The review also touches on the potential for single-cell approaches to accelerate breeding programs and contribute to sustainable agriculture. This review concludes with a forward-looking perspective on the future impact of single-cell technologies in plant research. We foresee these tools becoming essential in plant biotechnology, spurring innovations that tackle global challenges in food security and environmental sustainability. This review serves as a valuable resource for researchers, providing a roadmap from sample preparation to data analysis and highlighting the transformative potential of single-cell transcriptomics in plant biotechnology.
Collapse
Affiliation(s)
- Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, 203201, Noida, U.P, India.
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, 203201, Noida, U.P, India
| | - Varun Kumar Sharma
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, 203201, Noida, U.P, India
| | - Pooja Bhadrecha
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
7
|
Wu Y, Li J, Feng K, Tan A, Gao Y, Chen W, Jia W, Guo X, Kang J. N-CADHERIN +/CD168 - subpopulation determines therapeutic variations of UC-MSCs for cardiac repair after myocardial infarction. Stem Cell Res Ther 2024; 15:423. [PMID: 39533355 PMCID: PMC11559175 DOI: 10.1186/s13287-024-04032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The efficiency of mesenchymal stem cells (MSCs) in treating myocardial infarction (MI) remains inconsistent, which limits their therapeutic applications. Therefore, exploring the mechanism for the inconsistent efficacy of MSCs and identification the criteria for screening MSCs are important for improving the efficiency of MSCs. METHODS Mouse model after MI was utilized to test the role of MSCs from different donors and the functional subpopulation in improving cardiac function. Heterogeneity of MSCs was identified using single-cell RNA sequencing (scRNA-seq) of MSC-GY. GSEA and Scissor analyses were used to find the functional subpopulations of MSCs that promote angiogenesis. The role of functional subpopulations in promoting angiogenesis was verified by detecting the secretory proteins, the ratio of N-CADHERIN+/CD168- subpopulations in MSCs, and the tube formation, migration, and proliferation of HUVECs after treatment with conditional medium (CM) derived from different MSCs. RESULTS We found that umbilical cord-derived MSCs (UC-MSCs) from different donors have varied therapeutic efficacy in MI mice and UC-MSCs with higher therapeutic effectiveness exhibited the most potent pro-angiogenic effects by secreting elevated levels of angiogenesis-related proteins, such as MYDGF, VEGFA, and FGF2. ScRNA-seq of 10,463 UC-MSCs revealed that the N-CADHERIN+/CD168- subpopulation was closely associated with pro-angiogenic effects, and the ratio of this cell subpopulation was positively correlated with the angiogenic potential of MSCs. We also found that the N-CADHERIN+/CD168- subpopulation was the functional subpopulation of MSCs in improving cardiac function of MI mice. CONCLUSIONS Our study identified that the N-CADHERIN+/CD168- subpopulation was the functional subpopulation of MSCs in treating MI, which was essential for the development and utilization of MSCs in MI treatment.
Collapse
Affiliation(s)
- Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ke Feng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ailing Tan
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yingying Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
8
|
Sun S, Wang L, Tang Q, Yi J, Yu X, Cao Y, Jiang L, Liu J. Myocardial infarction in rats was alleviated by MSCs derived from the maternal segment of the human umbilical cord. Front Cell Dev Biol 2024; 12:1469541. [PMID: 39479514 PMCID: PMC11521943 DOI: 10.3389/fcell.2024.1469541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) are safe and effective in treating myocardial infarction (MI) and have broad application prospects. However, the heterogeneity of MSCs may affect their therapeutic effect on the disease. We recently found that MSCs derived from different segments of the same umbilical cord (UC) showed significant difference in the expression of genes that are related to heart development and injury repair. We therefore hypothesized that those MSCs with high expression of above genes are more effective to treat MI and tested it in this study. Methods MSCs were isolated from 3 cm-long segments of the maternal, middle and fetal segments of the UC (maternal-MSCs, middle-MSCs and fetal-MSCs, respectively). RNA-seq was used to analyze and compare the transcriptomes. We verified the effects of MSCs on oxygen-glucose deprivation (OGD)-induced cardiomyocyte apoptosis in vitro. In vivo, a rat MI model was established by ligating the left anterior descending coronary artery, and MSCs were injected into the myocardium surrounding the MI site. The therapeutic effects of MSCs derived from different segments of the UC were evaluated by examining cardiac function, histopathology, cardiomyocyte apoptosis, and angiogenesis. Results Compared to fetal-MSCs and middle-MSCs, maternal-MSCs exhibited significantly higher expression of genes that are associated with heart development, such as GATA-binding protein 4 (GATA4), and myocardin (MYOCD). Coculture with maternal-MSCs reduced OGD-induced cardiomyocyte apoptosis. In rats with MI, maternal-MSCs significantly restored cardiac contractile function and reduced the infarct size. Mechanistic experiments revealed that maternal-MSCs exerted cardioprotective effects by decreasing cardiomyocyte apoptosis, and promoting angiogenesis. Conclusion Our data demonstrated that maternal segment-derived MSCs were a superior cell source for regenerative repair after MI. Segmental localization of the entire UC when isolating hUCMSCs was necessary to improve the effectiveness of clinical applications.
Collapse
Affiliation(s)
- Shuifen Sun
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| | - Linping Wang
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| | - Qisheng Tang
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| | - Jialian Yi
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| | - Xin Yu
- Medicine School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yu Cao
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lihong Jiang
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Liu
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
9
|
Li B, Zhang L, Yin Y, Chen A, Seo BR, Lou J, Mooney DJ, Weitz DA. Stiff Hydrogel Encapsulation Retains Mesenchymal Stem Cell Stemness for Regenerative Medicine. MATTER 2024; 7:3447-3468. [PMID: 39553898 PMCID: PMC11567665 DOI: 10.1016/j.matt.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mesenchymal stem cell (MSC) stands as a prominent choice in regenerative medicine, yet their therapeutic potential remains controversial due to challenges in maintaining lineage and viability. As directly injected MSCs are quickly cleared by the host immune system, entrapping viable cells in a 3D semi-permeable hydrogel matrix extends cell retention, showing great promise in enhancing therapeutic effect. However, the effects of hydrogel encapsulation on MSC subpopulations are not fully understood. Here, we fabricate thin-shell alginate hydrogel microcapsules using droplet microfluidics, controlling the shell mechanical properties by adjusting alginate molecular weight. We find that a stiffer shell increases the proliferation and supports the residence of MSCs in vivo than a softer shell. The stiff 3D hydrogel also promotes the maintenance of stemness, as confirmed by single-cell RNA sequencing. Our work demonstrates the potential of hydrogel-encapsulated stem cells for long-term therapeutic applications, offering insight into modulating MSC subpopulations for specific function.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, CN, 310003
| | - Liyuan Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, CN, 266580
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138
| | - Yuan Yin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, CN, 310003
| | - Anqi Chen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138
| | - Bo Ri Seo
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138
- Takeda Pharmaceutical Company Limited, Los Angeles, CA, 90039
| | - Junzhe Lou
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02138
| | - David J. Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02138
| | - David A. Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138
- Department of Physics, Harvard University, Cambridge, MA, 02138
| |
Collapse
|
10
|
Behm C, Miłek O, Schwarz K, Kovar A, Derdak S, Rausch-Fan X, Moritz A, Andrukhov O. Heterogeneity in Dental Tissue-Derived MSCs Revealed by Single-Cell RNA-seq. J Dent Res 2024; 103:1141-1152. [PMID: 39327720 PMCID: PMC11500480 DOI: 10.1177/00220345241271997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent, progenitor cells that reside in tissues across the human body, including the periodontal ligament (PDL) and gingiva. They are a promising therapeutic tool for various degenerative and inflammatory diseases. However, different heterogeneity levels caused by tissue-to-tissue and donor-to-donor variability, and even intercellular differences within a given MSCs population, restrict their therapeutic potential. There are considerable efforts to decipher these heterogeneity levels using different "omics" approaches, including single-cell transcriptomics. Previous studies applied this approach to compare MSCs isolated from various tissues of different individuals, but distinguishing between donor-to-donor and tissue-to-tissue variability is still challenging. In this study, MSCs were isolated from the PDL and gingiva of 5 periodontally healthy individuals and cultured in vitro. A total of 3,844 transcriptomes were generated using single-cell mRNA sequencing. Clustering across the 2 different tissues per donor identified PDL- and gingiva-specific and tissue-spanning MSCs subpopulations with unique upregulated gene sets. Gene/pathway enrichment and protein-protein interaction (PPI) network analysis revealed differences restricted to several cellular processes between tissue-specific subpopulations, indicating a limited tissue-of-origin variability in MSCs. Gene expression, pathway enrichment, and PPI network analysis across all donors' PDL- or gingiva-specific subpopulations showed significant but limited donor-to-donor differences. In conclusion, this study demonstrates tissue- and donor-specific variabilities in the transcriptome level of PDL- and gingiva-derived MSCs, which seem restricted to specific cellular processes. Identifying tissue-specific and tissue-spanning subpopulations highlights the intercellular differences in dental tissue-derived MSCs. It could be reasonable to control MSCs at a single-cell level to ensure their properties before transplantation.
Collapse
Affiliation(s)
- C. Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - O. Miłek
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - K. Schwarz
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - A. Kovar
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - S. Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - X. Rausch-Fan
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Austria
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - A. Moritz
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - O. Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Austria
| |
Collapse
|
11
|
Wang P, Zhang Y, Li Z, Zhou S, Tang Q, Wang Z, Xiao R, Feng M, Wu L, Liang D. Mesenchymal Stem Cells Derived from Human Urine-Derived iPSCs Exhibit Low Immunogenicity and Reduced Immunomodulatory Profile. Int J Mol Sci 2024; 25:10394. [PMID: 39408724 PMCID: PMC11476417 DOI: 10.3390/ijms251910394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Human-induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) represent a promising and renewable cell source for therapeutic applications. A systematic evaluation of the immunological properties and engraftment potential of iMSCs generated from urine-derived iPSCs is lacking, which has impeded their broader application. In this study, we differentiated urine-derived iPSCs into iMSCs and assessed their fundamental MSC characteristics, immunogenicity, immunomodulatory capacity and in vivo engraftment. Compared to umbilical cord-derived MSCs (UCMSCs), iMSCs demonstrated an enhanced proliferative capacity, a higher level of regenerative gene expression, and lower immunogenicity, strengthening resistance to apoptosis induced by allogeneic peripheral blood mononuclear cells (PBMCs) and the NK-92 cell line. In addition, iMSCs exhibited a diminished ability to inhibit T cell proliferation and activation compared with UCMSCs. Transcriptomic analyses further revealed the decreased expression of immune regulatory factors in iMSCs. After transfusion into mouse models, iMSCs engrafted in the lungs, liver, and spleen and exhibited the ability to migrate to tumor tissues. Our results indicated that iMSCs generated from urine-derived iPSCs have a significant replicative capacity, low immunogenicity and unique immunomodulatory properties, and hence offer obvious advantages in immune privilege and allogenic therapeutic application prospects.
Collapse
Affiliation(s)
- Peiyun Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (P.W.); (Y.Z.); (Z.L.); (S.Z.); (Q.T.); (Z.W.); (R.X.); (L.W.)
| | - Ying Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (P.W.); (Y.Z.); (Z.L.); (S.Z.); (Q.T.); (Z.W.); (R.X.); (L.W.)
| | - Zhixing Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (P.W.); (Y.Z.); (Z.L.); (S.Z.); (Q.T.); (Z.W.); (R.X.); (L.W.)
| | - Shenglan Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (P.W.); (Y.Z.); (Z.L.); (S.Z.); (Q.T.); (Z.W.); (R.X.); (L.W.)
| | - Qiyu Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (P.W.); (Y.Z.); (Z.L.); (S.Z.); (Q.T.); (Z.W.); (R.X.); (L.W.)
| | - Zujia Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (P.W.); (Y.Z.); (Z.L.); (S.Z.); (Q.T.); (Z.W.); (R.X.); (L.W.)
| | - Rou Xiao
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (P.W.); (Y.Z.); (Z.L.); (S.Z.); (Q.T.); (Z.W.); (R.X.); (L.W.)
| | - Mai Feng
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha 410078, China;
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (P.W.); (Y.Z.); (Z.L.); (S.Z.); (Q.T.); (Z.W.); (R.X.); (L.W.)
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (P.W.); (Y.Z.); (Z.L.); (S.Z.); (Q.T.); (Z.W.); (R.X.); (L.W.)
| |
Collapse
|
12
|
Cyr-Depauw C, Cook DP, Mižik I, Lesage F, Vadivel A, Renesme L, Deng Y, Zhong S, Bardin P, Xu L, Möbius MA, Marzahn J, Freund D, Stewart DJ, Vanderhyden BC, Rüdiger M, Thébaud B. Single-Cell RNA Sequencing Reveals Repair Features of Human Umbilical Cord Mesenchymal Stromal Cells. Am J Respir Crit Care Med 2024; 210:814-827. [PMID: 38564376 DOI: 10.1164/rccm.202310-1975oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/01/2024] [Indexed: 04/04/2024] Open
Abstract
Rationale: The chronic lung disease bronchopulmonary dysplasia (BPD) is the most severe complication of extreme prematurity. BPD results in impaired lung alveolar and vascular development and long-term respiratory morbidity, for which only supportive therapies exist. Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) improve lung structure and function in experimental BPD. Results of clinical trials with MSCs for many disorders do not yet match the promising preclinical studies. A lack of specific criteria to define functionally distinct MSCs persists. Objectives: To determine and correlate single-cell UC-MSC transcriptomic profiles with therapeutic potential. Methods: UC-MSCs from five term donors and human neonatal dermal fibroblasts (HNDFs; control cells of mesenchymal origin) transcriptomes were investigated using single-cell RNA sequencing (scRNA-seq) analysis. The lung-protective effect of UC-MSCs with a distinct transcriptome and control HNDFs was tested in vivo in hyperoxia-induced neonatal lung injury in rats. Measurements and Main Results: UC-MSCs showed limited transcriptomic heterogeneity but were different from HNDFs. Gene Ontology enrichment analysis revealed distinct (progenitor-like and fibroblast-like) UC-MSC subpopulations. Only treatment with progenitor-like UC-MSCs improved lung function and structure and attenuated pulmonary hypertension in hyperoxia-exposed rat pups. Moreover, scRNA-seq identified major histocompatibility complex class I as a molecular marker of nontherapeutic cells and associated with decreased lung retention. Conclusions: UC-MSCs with a progenitor-like transcriptome, but not with a fibroblast-like transcriptome, provide lung protection in experimental BPD. High expression of major histocompatibility complex class I is associated with reduced therapeutic benefit. scRNA-seq may be useful to identify subsets of MSCs with superior repair capacity for clinical application.
Collapse
Affiliation(s)
- Chanèle Cyr-Depauw
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ivana Mižik
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Flore Lesage
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Laurent Renesme
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yupu Deng
- Sinclair Centre for Regenerative Medicine and
| | | | - Pauline Bardin
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Liqun Xu
- Sinclair Centre for Regenerative Medicine and
| | - Marius A Möbius
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital Carl Gustav Carus, and
- Research Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Jenny Marzahn
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital Carl Gustav Carus, and
| | - Daniel Freund
- Research Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Duncan J Stewart
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Ottawa/The Ottawa Hospital, Ottawa, Ontario, Canada; and
| | - Mario Rüdiger
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital Carl Gustav Carus, and
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Younesi FS, Hinz B. The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair? Int J Mol Sci 2024; 25:8712. [PMID: 39201399 PMCID: PMC11354465 DOI: 10.3390/ijms25168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
14
|
Česnik AB, Švajger U. The issue of heterogeneity of MSC-based advanced therapy medicinal products-a review. Front Cell Dev Biol 2024; 12:1400347. [PMID: 39129786 PMCID: PMC11310176 DOI: 10.3389/fcell.2024.1400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Mesenchymal stromal stem cells (MSCs) possess a remarkable potential for numerous clinical applications due to their unique properties including self-renewal, immunomodulation, paracrine actions and multilineage differentiation. However, the translation of MSC-based Advanced Therapy Medicinal Products (ATMPs) into the clinic has frequently met with inconsistent outcomes. One of the suspected reasons for this issue is the inherent and extensive variability that exists among such ATMPs, which makes the interpretation of their clinical efficacy difficult to assess, as well as to compare the results of various studies. This variability stems from numerous reasons including differences in tissue sources, donor attributes, variances in manufacturing protocols, as well as modes of administration. MSCs can be isolated from various tissues including bone marrow, umbilical cord, adipose tissue and others, each with its unique phenotypic and functional characteristics. While MSCs from different sources do share common features, they also exhibit distinct gene expression profiles and functional properites. Donor-specific factors such as age, sex, body mass index, and underlying health conditions can influence MSC phenotype, morphology, differentiation potential and function. Moreover, variations in preparation of MSC products introduces additional heterogeneity as a result of cell culture media composition, presence or absence of added growth factors, use of different serum supplements and culturing techniques. Once MSC products are formulated, storage protocols play a pivotal role in its efficacy. Factors that affect cell viability include cell concentration, delivery solution and importantly, post-thawing protocols where applicable. Ensuing, differences in administration protocols can critically affect the distribution and functionallity of administered cells. As MSC-based therapies continue to advance through numerous clinical trials, implication of strategies to reduce product heterogeneity is imperative. Central to addressing these challenges is the need for precise prediction of clinical responses, which require well-defined MSC populations and harmonized assessment of their specific functions. By addressing these issues by meaningful approaches, such as, e.g., MSC pooling, the field can overcome barriers to advance towards more consistent and effective MSC-based therapies.
Collapse
Affiliation(s)
- Ana Bajc Česnik
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
| | - Urban Švajger
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Long Q, Zhang P, Ou Y, Li W, Yan Q, Yuan X. Single-cell sequencing advances in research on mesenchymal stem/stromal cells. Hum Cell 2024; 37:904-916. [PMID: 38743204 DOI: 10.1007/s13577-024-01076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs), originating from the mesoderm, represent a multifunctional stem cell population capable of differentiating into diverse cell types and exhibiting a wide range of biological functions. Despite more than half a century of research, MSCs continue to be among the most extensively studied cell types in clinical research projects globally. However, their significant heterogeneity and phenotypic instability have significantly hindered their exploration and application. Single-cell sequencing technology emerges as a powerful tool to address these challenges, offering precise dissection of complex cellular samples. It uncovers the genetic structure and gene expression status of individual contained cells on a massive scale and reveals the heterogeneity among these cells. It links the molecular characteristics of MSCs with their clinical applications, contributing to the advancement of regenerative medicine. With the development and cost reduction of single-cell analysis techniques, sequencing technology is now widely applied in fundamental research and clinical trials. This study aimed to review the application of single-cell sequencing in MSC research and assess its prospects.
Collapse
Affiliation(s)
- Qingxi Long
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, China
| | - Wen Li
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China
| | - Qi Yan
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan, 063000, China.
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, China.
| |
Collapse
|
16
|
Yi N, Zeng Q, Zheng C, Li S, Lv B, Wang C, Li C, Jiang W, Liu Y, Yang Y, Yan T, Xue J, Xue Z. Functional variation among mesenchymal stem cells derived from different tissue sources. PeerJ 2024; 12:e17616. [PMID: 38952966 PMCID: PMC11216188 DOI: 10.7717/peerj.17616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) are increasingly recognized for their regenerative potential. However, their clinical application is hindered by their inherent variability, which is influenced by various factors, such as the tissue source, culture conditions, and passage number. Methods MSCs were sourced from clinically relevant tissues, including adipose tissue-derived MSCs (ADMSCs, n = 2), chorionic villi-derived MSCs (CMMSCs, n = 2), amniotic membrane-derived MSCs (AMMSCs, n = 3), and umbilical cord-derived MSCs (UCMSCs, n = 3). Passages included the umbilical cord at P0 (UCMSCP0, n = 2), P3 (UCMSCP3, n = 2), and P5 (UCMSCP5, n = 2) as well as the umbilical cord at P5 cultured under low-oxygen conditions (UCMSCP5L, n = 2). Results We observed that MSCs from different tissue origins clustered into six distinct functional subpopulations, each with varying proportions. Notably, ADMSCs exhibited a higher proportion of subpopulations associated with vascular regeneration, suggesting that they are beneficial for applications in vascular regeneration. Additionally, CMMSCs had a high proportion of subpopulations associated with reproductive processes. UCMSCP5 and UCMSCP5L had higher proportions of subpopulations related to female reproductive function than those for earlier passages. Furthermore, UCMSCP5L, cultured under low-oxygen (hypoxic) conditions, had a high proportion of subpopulations associated with pro-angiogenic characteristics, with implications for optimizing vascular regeneration. Conclusions This study revealed variation in the distribution of MSC subpopulations among different tissue sources, passages, and culture conditions, including differences in functions related to vascular and reproductive system regeneration. These findings hold promise for personalized regenerative medicine and may lead to more effective clinical treatments across a spectrum of medical conditions.
Collapse
Affiliation(s)
- Ning Yi
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Qiao Zeng
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Chunbing Zheng
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Shiping Li
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Bo Lv
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Cheng Wang
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Chanyi Li
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| | - Wenjiao Jiang
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Yun Liu
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Yuan Yang
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Tenglong Yan
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Jinfeng Xue
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Zhigang Xue
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| |
Collapse
|
17
|
Subramanian A, Ip CHL, Qin W, Liu X, W D Carter S, Oguz G, Ramasamy A, E Illanes S, Biswas A, G Perron G, L Fee E, W L Li S, K Y Seah M, A Choolani M, W Kemp M. Simulated lunar microgravity transiently arrests growth and induces osteocyte-chondrocyte lineage differentiation in human Wharton's jelly stem cells. NPJ Microgravity 2024; 10:51. [PMID: 38704360 PMCID: PMC11069510 DOI: 10.1038/s41526-024-00397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
Human Wharton's jelly stem cells (hWJSCs) are multipotent stem cells that are extensively employed in biotechnology applications. However, the impact of simulated lunar microgravity (sμG) on the growth, differentiation, and viability of this cell population is incompletely characterized. We aimed to determine whether acute (72 h) exposure to sμG elicited changes in growth and lineage differentiation in hWJSCs and if putative changes were maintained once exposure to terrestrial gravity (1.0 G) was restored. hWJSCs were cultured under standard 1.0 G conditions prior to being passaged and cultured under sμG (0.16 G) using a random positioning machine. Relative to control, hWJSCs cultured under sμG exhibited marked reductions in growth but not viability. Cell population expression of characteristic stemness markers (CD 73, 90, 105) was significantly reduced under sμG conditions. hWJSCs had 308 significantly upregulated and 328 significantly downregulated genes when compared to 1.0 G culture conditions. Key markers of cell replication, including MKI67, were inhibited. Significant upregulation of osteocyte-chondrocyte lineage markers, including SERPINI1, MSX2, TFPI2, BMP6, COMP, TMEM119, LUM, HGF, CHI3L1 and SPP1, and downregulation of cell fate regulators, including DNMT1 and EZH2, were detected in sμG-exposed hWJSCs. When returned to 1.0 G for 3 days, sμG-exposed hWJSCs had accelerated growth, and expression of stemness markers increased, approaching normal (i.e. 95%) levels. Our data support earlier findings that acute sμG significantly reduces the cell division potential of hWJSCs and suggest that acute sμG-exposure induces reversible changes in cell growth accompanied by osteocyte-chondrocyte changes in lineage differentiation.
Collapse
Affiliation(s)
- Arjunan Subramanian
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Chelsea Han Lin Ip
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Wei Qin
- Department of Obstetrics and Gynecology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, No. 46 Chongxin Road, 541002, Guilin City, Guangxi Zhuang Autonomous Region, P. R. China
| | - Xiawen Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital Guangzhou Medical University, 511436, Guangzhou, P.R. China
| | - Sean W D Carter
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Gokce Oguz
- Genome Institute of Singapore (GIS). Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, 138632, Republic of Singapore
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore (GIS). Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, 138632, Republic of Singapore
| | - Sebastian E Illanes
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, 7620001, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Department of Obstetrics and Gynaecology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Gabriel G Perron
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Erin L Fee
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA, Australia
- Women and Infants Research Foundation, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Sarah W L Li
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Department of Obstetrics and Gynaecology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Michelle K Y Seah
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Mahesh A Choolani
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
- Department of Obstetrics and Gynaecology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
| | - Matthew W Kemp
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
- Department of Obstetrics and Gynaecology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA, Australia.
- Women and Infants Research Foundation, King Edward Memorial Hospital, Subiaco, WA, Australia.
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, 980-8574, Japan.
| |
Collapse
|
18
|
Teshima T. Heterogeneity of mesenchymal stem cells as a limiting factor in their clinical application to inflammatory bowel disease in dogs and cats. Vet J 2024; 304:106090. [PMID: 38417670 DOI: 10.1016/j.tvjl.2024.106090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Inflammatory bowel disease (IBD) is a major subtype of chronic enteropathies in dogs and cats. Conventional drugs such as immunomodulatory medicines as glucocorticoids and/or other anti-inflammatory are mainly applied for treatment. However, these drugs are not always effective to maintain remission from IBD and are limited by unacceptable side effects. Hence, more effective and safe therapeutic options need to be developed. Mesenchymal stem cells (MSCs) are multipotent stem cells with a self-renewal capacity, and have immunomodulatory, anti-inflammatory, anti-fibrotic, and tissue repair properties. Therefore, the application of MSCs as an alternative therapy for IBD has great potential in veterinary medicine. The efficacy of adipose tissue-derived MSC (ADSC) therapy for IBD in dogs and cats has been reported, including numerous studies in animal models. However, treatment outcomes in clinical trials of human IBD patients have not been consistent with preclinical studies. MSC-based therapy for various diseases has received widespread attention, but various problems in such therapy remain, among which no consensus has been reached on the preparation and treatment procedures for MSCs, and cellular heterogeneity of MSCs may be an issue. This review describes the current status of ADSC therapy for canine and feline IBD and summarizes the cellular heterogeneity of canine ADSCs, to highlight the necessity for further reduction or elimination of MSCs heterogeneity and standardization of MSC-based therapies.
Collapse
Affiliation(s)
- Takahiro Teshima
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Japan; Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan.
| |
Collapse
|
19
|
Mou L, Wang TB, Wang X, Pu Z. Advancing diabetes treatment: the role of mesenchymal stem cells in islet transplantation. Front Immunol 2024; 15:1389134. [PMID: 38605972 PMCID: PMC11007079 DOI: 10.3389/fimmu.2024.1389134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Diabetes mellitus, a prevalent global health challenge, significantly impacts societal and economic well-being. Islet transplantation is increasingly recognized as a viable treatment for type 1 diabetes that aims to restore endogenous insulin production and mitigate complications associated with exogenous insulin dependence. We review the role of mesenchymal stem cells (MSCs) in enhancing the efficacy of islet transplantation. MSCs, characterized by their immunomodulatory properties and differentiation potential, are increasingly seen as valuable in enhancing islet graft survival, reducing immune-mediated rejection, and supporting angiogenesis and tissue repair. The utilization of MSC-derived extracellular vesicles further exemplifies innovative approaches to improve transplantation outcomes. However, challenges such as MSC heterogeneity and the optimization of therapeutic applications persist. Advanced methodologies, including artificial intelligence (AI) and single-cell RNA sequencing (scRNA-seq), are highlighted as potential technologies for addressing these challenges, potentially steering MSC therapy toward more effective, personalized treatment modalities for diabetes. This review revealed that MSCs are important for advancing diabetes treatment strategies, particularly through islet transplantation. This highlights the importance of MSCs in the field of regenerative medicine, acknowledging both their potential and the challenges that must be navigated to fully realize their therapeutic promise.
Collapse
Affiliation(s)
- Lisha Mou
- Department of Endocrinology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Tony Bowei Wang
- Biology Department, Skidmore College, Saratoga Springs, NY, United States
| | - Xinyu Wang
- Department of Endocrinology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Zuhui Pu
- Imaging Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Shen J, Wu L, Shi X, Chen G, Liu T, Xu F, Xu X, Kou X, Zhao Y, Wang H, Wang C, Gao S, Xu S. Transplantation of the LRP1 high subpopulation of human umbilical cord-derived mesenchymal stem cells improves ovarian function in mice with premature ovarian failure and aged mice. Stem Cell Res Ther 2024; 15:64. [PMID: 38438896 PMCID: PMC10913679 DOI: 10.1186/s13287-024-03660-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Premature ovarian failure (POF) has a profound impact on female reproductive and psychological health. In recent years, the transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) has demonstrated unprecedented potential in the treatment of POF. However, the heterogeneity of human UC-MSCs remains a challenge for their large-scale clinical application. Therefore, it is imperative to identify specific subpopulations within UC-MSCs that possess the capability to improve ovarian function, with the aim of reducing the uncertainty arising from the heterogeneity while achieving more effective treatment of POF. METHODS 10 × Genomics was performed to investigate the heterogeneity of human UC-MSCs. We used LRP1 as a marker and distinguished the potential therapeutic subpopulation by flow cytometry, and determined its secretory functions. Unsorted UC-MSCs, LRP1high and LRP1low subpopulation was transplanted under the ovarian capsules of aged mice and CTX-induced POF mice, and therapeutic effects was evaluated by assessing hormone levels, estrous cycles, follicle counts, and embryo numbers. RNA sequencing on mouse oocytes and granulosa cells after transplantation was performed to explore the mechanism of LRP1high subpopulation on mouse oocytes and granulosa cells. RESULTS We identified three distinct functional subtypes, including mesenchymal stem cells, multilymphoid progenitor cells and trophoblasts. Additionally, we identified the LRP1high subpopulation, which improved ovarian function in aged and POF mice. We elucidated the unique secretory functions of the LRP1high subpopulation, capable of secreting various chemokines, cytokines, and growth factors. Furthermore, LRP1 plays a crucial role in regulating the ovarian microenvironment, including tissue repair and extracellular matrix remodeling. Consistent with its functions, the transcriptomes of oocytes and granulosa cells after transplantation revealed that the LRP1high subpopulation improves ovarian function by modulating the extracellular matrix of oocytes, NAD metabolism, and mitochondrial function in granulosa cells. CONCLUSION Through exploration of the heterogeneity of UC-MSCs, we identified the LRP1high subpopulation capable of improving ovarian function in aged and POF mice by secreting various factors and remodeling the extracellular matrix. This study provides new insights into the targeted exploration of human UC-MSCs in the precise treatment of POF.
Collapse
Affiliation(s)
- Jiacheng Shen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Li Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Xiaoying Shi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Tongji, 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Gang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Tingwei Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fangfang Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaocui Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaochen Kou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yanhong Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hong Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Tongji, 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaorong Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Shaohua Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
21
|
Udani S, Langerman J, Koo D, Baghdasarian S, Cheng B, Kang S, Soemardy C, de Rutte J, Plath K, Di Carlo D. Associating growth factor secretions and transcriptomes of single cells in nanovials using SEC-seq. NATURE NANOTECHNOLOGY 2024; 19:354-363. [PMID: 38082117 PMCID: PMC11452923 DOI: 10.1038/s41565-023-01560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/31/2023] [Indexed: 01/23/2024]
Abstract
Cells secrete numerous bioactive molecules that are essential for the function of healthy organisms. However, scalable methods are needed to link individual cell secretions to their transcriptional state over time. Here, by developing and using secretion-encoded single-cell sequencing (SEC-seq), which exploits hydrogel particles with subnanolitre cavities (nanovials) to capture individual cells and their secretions, we simultaneously measured the secretion of vascular endothelial growth factor A (VEGF-A) and the transcriptome for thousands of individual mesenchymal stromal cells. Our data indicate that VEGF-A secretion is heterogeneous across the cell population and is poorly correlated with the VEGFA transcript level. The highest VEGF-A secretion occurs in a subpopulation of mesenchymal stromal cells characterized by a unique gene expression signature comprising a surface marker, interleukin-13 receptor subunit alpha 2 (IL13RA2), which allowed the enrichment of this subpopulation. SEC-seq enables the identification of gene signatures linked to specific secretory states, facilitating mechanistic studies, the isolation of secretory subpopulations and the development of means to modulate cellular secretion.
Collapse
Affiliation(s)
- Shreya Udani
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Justin Langerman
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Doyeon Koo
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Sevana Baghdasarian
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Brian Cheng
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Simran Kang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Citradewi Soemardy
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, CA, USA.
| | - Dino Di Carlo
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.
- Partillion Bioscience, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute (CNSI), University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Smolinska A, Chodkowska M, Kominek A, Janiec J, Piwocka K, Sulejczak D, Sarnowska A. Stemness properties of SSEA-4+ subpopulation isolated from heterogenous Wharton's jelly mesenchymal stem/stromal cells. Front Cell Dev Biol 2024; 12:1227034. [PMID: 38455073 PMCID: PMC10917976 DOI: 10.3389/fcell.2024.1227034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/17/2024] [Indexed: 03/09/2024] Open
Abstract
Background: High heterogeneity of mesenchymal stem/stromal cells (MSCs) due to different degrees of differentiation of cell subpopulations poses a considerable challenge in preclinical studies. The cells at a pluripotent-like stage represent a stem cell population of interest for many researchers worldwide, which is worthy of identification, isolation, and functional characterization. In the current study, we asked whether Wharton's jelly-derived MSCs (WJ-MSCs) which express stage-specific embryonic antigen-4 (SSEA-4) can be considered as a pluripotent-like stem cell population. Methods: SSEA-4 expression in different culture conditions was compared and the efficiency of two cell separation methods were assessed: Magnetic Activated Cell Sorting (MACS) and Fluorescence Activated Cell Sorting (FACS). After isolation, SSEA-4+ cells were analyzed for the following parameters: the maintenance of the SSEA-4 antigen expression after cell sorting, stem cell-related gene expression, proliferation potential, clonogenicity, secretome profiling, and the ability to form spheres under 3D culture conditions. Results: FACS allowed for the enrichment of SSEA-4+ cell content in the population that lasted for six passages after sorting. Despite the elevated expression of stemness-related genes, SSEA-4+ cells neither differed in their proliferation and clonogenicity potential from initial and negative populations nor exhibited pluripotent differentiation repertoire. SSEA-4+ cells were observed to form smaller spheroids and exhibited increased survival under 3D conditions. Conclusion: Despite the transient expression of stemness-related genes, our findings could not fully confirm the undifferentiated pluripotent-like nature of the SSEA-4+ WJ-MSC population cultured in vitro.
Collapse
Affiliation(s)
- Agnieszka Smolinska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Chodkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kominek
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Janiec
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
23
|
Li H, Wang Y, Zhu G, Ma Q, Huang S, Guo G, Zhu F. Application progress of single-cell sequencing technology in mesenchymal stem cells research. Front Cell Dev Biol 2024; 11:1336482. [PMID: 38264356 PMCID: PMC10803637 DOI: 10.3389/fcell.2023.1336482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Single-Cell Sequencing (SCS) technology plays an important role in the field of Mesenchymal Stem Cells (MSCs) research. This paper comprehensively describes the application of SCS technology in the field of MSCs research, including (1) SCS enables more precise MSCs characterization and biomarker definition. (2) SCS reveals the prevalent gene expression heterogeneity among different subclusters within MSCs, which contributes to a more comprehensive understanding of MSCs function and diversity in developmental, regenerative, and pathological contexts. (3) SCS provides insights into the dynamic transcriptional changes experienced by MSCs during differentiation and the complex web of important signaling pathways and regulatory factors controlling key processes within MSCs, including proliferation, differentiation and regulation, and interactions mechanisms. (4) The analytical methods underpinning SCS data are rapidly evolving and converging with the field of histological research to systematically deconstruct the functions and mechanisms of MSCs. This review provides new perspectives for unraveling the biological properties, heterogeneity, differentiation potential, biological functions, and clinical potential of MSCs at the single-cell level.
Collapse
Affiliation(s)
- Hao Li
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yusong Wang
- Department of Burns, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Gehua Zhu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qimin Ma
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengyu Huang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Feng Zhu
- Department of Burns, The First Affiliated Hospital, Naval Medical University, Shanghai, China
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Kaonis S, Aboellail Z, Forman J, Ghosh S. High-Throughput Multiparametric Quantification of Mechanics Driven Heterogeneity in Mesenchymal Stromal Cell Population. Adv Biol (Weinh) 2024; 8:e2300318. [PMID: 37840408 DOI: 10.1002/adbi.202300318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 10/17/2023]
Abstract
Mesenchymal stromal or stem cells (MSCs) are one of the most promising candidates for a myriad of cell therapy applications. Despite showing promise in numerous preclinical and clinical studies, MSC-based therapy is not yet a reality for regenerative medicine due to its suboptimal outcome at the clinical endpoint. The mechanical environment is a critical determinant of MSC gene expression and function. This study reports that MSC population becomes phenotypically heterogenous and commits to an unwanted osteoprogenitor pathway when it experiences an abnormal mechanically stiff environment, compared to its native softer environment. A method is developed to measure the heterogeneity using nuclear shape, chromatin state, and CD73 marker. Heterogeneity is shown to be associated with a larger spread in the nuclear shape parameters and a smaller spread in the chromatin openness. Subsequently, intervention strategies are investigated to create a more homogeneous MSC population. Culturing MSCs on soft surfaces or inhibiting actomyosin on stiff surfaces can make them more homogeneous, while inhibiting YAP, Runx2, and actin polymerization helps maintain but does not fully homogenize them. This study offers insights for cell and tissue engineers, aiding in the design of optimal conditions and materials for MSC culture, ultimately enhancing their therapeutic potential.
Collapse
Affiliation(s)
- Samantha Kaonis
- School of Biomedical Engineering, Colorado State University, 700 Meridian Ave, Fort Collins, CO, 80523, USA
- Translational Medicine Institute, Colorado State University, 2350 Gillette Dr, Fort Collins, CO, 80523, USA
| | - Zack Aboellail
- School of Biomedical Engineering, Colorado State University, 700 Meridian Ave, Fort Collins, CO, 80523, USA
- Translational Medicine Institute, Colorado State University, 2350 Gillette Dr, Fort Collins, CO, 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 400 Isotope Dr, Fort Collins, CO, 80521, USA
| | - Jack Forman
- School of Biomedical Engineering, Colorado State University, 700 Meridian Ave, Fort Collins, CO, 80523, USA
- Translational Medicine Institute, Colorado State University, 2350 Gillette Dr, Fort Collins, CO, 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 400 Isotope Dr, Fort Collins, CO, 80521, USA
| | - Soham Ghosh
- School of Biomedical Engineering, Colorado State University, 700 Meridian Ave, Fort Collins, CO, 80523, USA
- Translational Medicine Institute, Colorado State University, 2350 Gillette Dr, Fort Collins, CO, 80523, USA
- Department of Mechanical Engineering, Colorado State University, 400 Isotope Dr, Fort Collins, CO, 80521, USA
- Cell and Molecular Biology, Colorado State University, 1050 Libbie Coy Way, Fort Collins, CO, 80524, USA
| |
Collapse
|
25
|
Yang Z, Peng Y, Yuan J, Xia H, Luo L, Wu X. Mesenchymal Stem Cells: A Promising Treatment for Thymic Involution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:29-38. [PMID: 37421539 DOI: 10.1007/5584_2023_780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
The thymus is the main immune organ in the body. However, the thymus gradually degenerates in early life, leading to a reduction in T-cell production and a decrease in immune function. Mesenchymal stem cells (MSCs) are a promising alternative for the treatment of thymus senescence due to their homing ability to the site of inflammation and their paracrine, anti-inflammatory, and antioxidant properties. However, the heterogeneity, difficulty of survival in vivo, short residence time, and low homing efficiency of the injected MSCs affect the clinical therapeutic effect. This article reviews strategies to improve the efficacy of mesenchymal stem cell therapy, including the selection of appropriate cell doses, transplantation frequency, and interval cycles. The survival rate of MSCs can be improved to some extent by improving the infusion mode of MSCs, such as simulating the in vivo environment, applying the biological technology of hydrogels and microgels, and iron oxide labeling technology, which can improve the curative effect and homing of MSCs, promote the regeneration of thymic epithelial cells, and restore the function of the thymus.
Collapse
Affiliation(s)
- Zailing Yang
- The Second People's Hospital of Guiyang, Medical Laboratory, Guiyang, Guizhou Province, China
| | - Yunxiao Peng
- The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Jun Yuan
- The Second People's Hospital of Guiyang, Medical Laboratory, Guiyang, Guizhou Province, China
| | - Haixiong Xia
- The Second People's Hospital of Guiyang, Medical Laboratory, Guiyang, Guizhou Province, China
| | - Li Luo
- The Second People's Hospital of Guiyang, Medical Laboratory, Guiyang, Guizhou Province, China
| | - Xijun Wu
- The Second People's Hospital of Guiyang, Medical Laboratory, Guiyang, Guizhou Province, China.
| |
Collapse
|
26
|
Tran ANT, Kim HY, Oh SY, Kim HS. CD49f and CD146: A Possible Crosstalk Modulates Adipogenic Differentiation Potential of Mesenchymal Stem Cells. Cells 2023; 13:55. [PMID: 38201259 PMCID: PMC10778538 DOI: 10.3390/cells13010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The lack of appropriate mesenchymal stem cells (MSCs) selection methods has given the challenges for standardized harvesting, processing, and phenotyping procedures of MSCs. Genetic engineering coupled with high-throughput proteomic studies of MSC surface markers arises as a promising strategy to identify stem cell-specific markers. However, the technical limitations are the key factors making it less suitable to provide an appropriate starting material for the screening platform. A more accurate, easily accessible approach is required to solve the issues. METHODS This study established a high-throughput screening strategy with forward versus side scatter gating to identify the adipogenesis-associated markers of bone marrow-derived MSCs (BMSCs) and tonsil-derived MSCs (TMSCs). We classified the MSC-derived adipogenic differentiated cells into two clusters: lipid-rich cells as side scatter (SSC)-high population and lipid-poor cells as SSC-low population. By screening the expression of 242 cell surface proteins, we identified the surface markers which exclusively found in lipid-rich subpopulation as the specific markers for BMSCs and TMSCs. RESULTS High-throughput screening of the expression of 242 cell surface proteins indicated that CD49f and CD146 were specific for BMSCs and TMSCs. Subsequent immunostaining confirmed the consistent specific expression of CD49f and CD146 and in BMSCs and TMSCs. Enrichment of MSCs by CD49f and CD146 surface markers demonstrated that the simultaneous expression of CD49f and CD146 is required for adipogenesis and osteogenesis of mesenchymal stem cells. Furthermore, the fate decision of MSCs from different sources is regulated by distinct responses of cells to differentiation stimulations despite sharing a common CD49f+CD146+ immunophenotype. CONCLUSIONS We established an accurate, robust, transgene-free method for screening adipogenesis associated cell surface proteins. This provided a valuable tool to investigate MSC-specific markers. Additionally, we showed a possible crosstalk between CD49f and CD146 modulates the adipogenesis of MSCs.
Collapse
Affiliation(s)
- An Nguyen-Thuy Tran
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (A.N.-T.T.); (H.Y.K.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ha Yeong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (A.N.-T.T.); (H.Y.K.)
| | - Se-Young Oh
- Department of Convergence Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University, Seoul 07985, Republic of Korea;
| | - Han Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (A.N.-T.T.); (H.Y.K.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
27
|
Kurenkova AD, Presniakova VS, Mosina ZA, Kibirskiy PD, Romanova IA, Tugaeva GK, Kosheleva NV, Vinogradov KS, Kostjuk SV, Kotova SL, Rochev YA, Medvedeva EV, Timashev PS. Resveratrol's Impact on the Chondrogenic Reagents' Effects in Cell Sheet Cultures of Wharton's Jelly-Derived MSCs. Cells 2023; 12:2845. [PMID: 38132166 PMCID: PMC10741663 DOI: 10.3390/cells12242845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) are of great interest in tissue engineering. We obtained hWJ-MSCs from four patients, and then we stimulated their chondrogenic phenotype formation in vitro by adding resveratrol (during cell expansion) and a canonical Wnt pathway activator, LiCl, as well as a Rho-associated protein kinase inhibitor, Y27632 (during differentiation). The effects of the added reagents on the formation of hWJ-MSC sheets destined to repair osteochondral injuries were investigated. Three-dimensional hWJ-MSC sheets grown on P(NIPAM-co-NtBA)-based matrices were characterized in vitro and in vivo. The combination of resveratrol and LiCl showed effects on hWJ-MSC sheets similar to those of the basal chondrogenic medium. Adding Y27632 decreased both the proportion of hypertrophied cells and the expression of the hyaline cartilage markers. In vitro, DMSO was observed to impede the effects of the chondrogenic factors. The mouse knee defect model experiment revealed that hWJ-MSC sheets grown with the addition of resveratrol and Y27632 were well integrated with the surrounding tissues; however, after 3 months, the restored tissue was identical to that of the naturally healed cartilage injury. Thus, the combination of chondrogenic supplements may not always have additive effects on the progress of cell culture and could be neutralized by the microenvironment after transplantation.
Collapse
Affiliation(s)
- Anastasiia D. Kurenkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Viktoria S. Presniakova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Zlata A. Mosina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Pavel D. Kibirskiy
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Irina A. Romanova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Gilyana K. Tugaeva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Nastasia V. Kosheleva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
- FSBSI “Institute of General Pathology and Pathophysiology”, Baltiyskaya St. 8, Moscow 125315, Russia
| | - Kirill S. Vinogradov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Sergei V. Kostjuk
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
- Department of Chemistry, Belarussian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
| | - Svetlana L. Kotova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Yury A. Rochev
- Center for Research in Medical Devices (CÚRAM), National University of Ireland Galway, H91 W2TY Galway, Ireland
| | - Ekaterina V. Medvedeva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| |
Collapse
|
28
|
Wan Z, Chen YF, Pan Q, Wang Y, Yuan S, Chin HY, Wu HH, Lin WT, Cheng PY, Yang YJ, Wang YF, Kumta SM, Lee CW, Lee OKS. Single-cell transcriptome analysis reveals the effectiveness of cytokine priming irrespective of heterogeneity in mesenchymal stromal cells. Cytotherapy 2023; 25:1155-1166. [PMID: 37715776 DOI: 10.1016/j.jcyt.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are recognized as a potential cell-based therapy for regenerative medicine. Short-term inflammatory cytokine pre-stimulation (cytokine priming) is a promising approach to enhance regenerative efficacy of MSCs. However, it is unclear whether their intrinsic heterogenic nature causes an unequal response to cytokine priming, which might blunt the accessibility of clinical applications. METHODS In this study, by analyzing the single-cell transcriptomic landscape of human bone marrow MSCs from a naïve to cytokine-primed state, we elucidated the potential mechanism of superior therapeutic potential in cytokine-primed MSCs. RESULTS We found that cytokine-primed MSCs had a distinct transcriptome landscape. Although substantial heterogeneity was identified within the population in both naïve and primed states, cytokine priming enhanced the several characteristics of MSCs associated with therapeutic efficacy irrespective of heterogeneity. After cytokine-priming, all sub-clusters of MSCs possessed high levels of immunoregulatory molecules, trophic factors, stemness-related genes, anti-apoptosis markers and low levels of multi-lineage and senescence signatures, which are critical for their therapeutic potency. CONCLUSIONS In conclusion, our results provide new insights into MSC heterogeneity under cytokine stimulation and suggest that cytokine priming reprogrammed MSCs independent of heterogeneity.
Collapse
Affiliation(s)
- Zihao Wan
- Department of Orthopaedics and Limb Reconstruction/Paediatric Orthopaedics, South China Hospital of Shenzhen University, Shenzhen, China; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China; Hospital Authority, Hong Kong SAR, China
| | - Yu-Fan Chen
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan; Department of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Qi Pan
- Department of Orthopaedics and Limb Reconstruction/Paediatric Orthopaedics, South China Hospital of Shenzhen University, Shenzhen, China
| | - Yiwei Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hui Yen Chin
- Hong Kong Hub of Paediatric Excellence, Hong Kong Children's Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hao-Hsiang Wu
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Ting Lin
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Po-Yu Cheng
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan
| | - Yun-Jung Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Fan Wang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shekhar Madhukar Kumta
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chien-Wei Lee
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan; Department of Biomedical Engineering, China Medical University, Taichung, Taiwan.
| | - Oscar Kuang-Sheng Lee
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan; Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
29
|
Galgaro BC, Beckenkamp LR, Naasani LIS, Wink MR. Adenosine metabolism by mesenchymal stromal cells isolated from different human tissues. Hum Cell 2023; 36:2247-2258. [PMID: 37535223 DOI: 10.1007/s13577-023-00957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Mesenchymal stromal cells (MSCs) have unique biological properties and play important functions, which make them attractive tools for cell-based therapies. The basic mechanisms of these cells are not fully understood. However, the adenosinergic pathway contributes to the main effects attributed to MSCs. Adenosine is a highly immunosuppressive molecule and exerts a central role in inflammation by neutralizing the proinflammatory ATP influence. This nucleoside is produced by purinergic signaling, an important physiological pathway for MSCs, which involves proliferation, migration, differentiation, and apoptosis. Therefore, in this study, we analyzed the extracellular AMP hydrolysis and consequent adenosine production, as well as the expression of CD73 and adenosine receptors on the cell surface of MSCs isolated from different human tissues: dermis (D-MSCs), adipose tissue (AD-MSCs), and umbilical cord (UC-MSCs). All cells confirmed their multipotent capacity by adipogenic, osteogenic, and chondrogenic differentiation, as well as the expression of cell surface markers including CD44 + , CD105 + , and CD90 + . All MSCs expressed similar levels of CD73 and CD26 without a statistical difference among the different tissues, whereas ADA expression was lower in AD-MSCs. In addition, A1R and A3R mRNA levels were higher in D-MSCs and AD-MSCs, respectively. Enzymatic assay showed that AD-MSCs have the highest hydrolysis rate of AMP, leading to increased amount of adenosine production. Moreover, despite all MSCs completely hydrolyze extracellular AMP generating adenosine, the pattern of nucleosides metabolism was different. Therefore, although MSCs share certain characteristics as the multilineage potential and immunophenotype, they show different adenosinergic profiles according to tissue origin.
Collapse
Affiliation(s)
- Bruna Campos Galgaro
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Liziane Raquel Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Liliana I Sous Naasani
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Márcia Rosângela Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil.
| |
Collapse
|
30
|
Kim MH, Tan SY, Yamahara K, Kino-Oka M. An in vitro culture platform to study the extracellular matrix remodeling potential of human mesenchymal stem cells. Acta Biomater 2023; 170:376-388. [PMID: 37619896 DOI: 10.1016/j.actbio.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
The ability of mesenchymal stem cells (MSCs) to synthesize and degrade extracellular matrix (ECM) is important for MSC-based therapies. However, the therapeutic effects associated with ECM remodeling in cultured MSCs have been limited by the lack of a method to assess the ability of cultured cells to degrade ECM in vitro. Here, we describe a simple in vitro culture platform for studying the ECM remodeling potential of cultured MSCs using a high-density collagen (CL) surface. Cells on the CL surface have remarkable ability to degrade collagen fibrils by secreting matrix metalloproteinase (MMP); to study this, the marker collagen hybridizing peptide (CHP) was used. Confirming the ECM remodeling potential of MSCs with different population doublings (PDs), young and healthy γ-H2AX-negative cells, a marker of DNA damage and senescence, showed more extensive collagen degradation on the CL surface, whereas damaged cells of γ-H2AX-positive cells showed no collagen degradation. The frequency of γ-H2AX-/CHP + cells at PD = 0 was 49%, which was 4.9-fold higher than that at PD=13.07, whereas the frequency of γ-H2AX+/CHP- at PD=13.07 was 50%, which was 6.4-folds higher than that at PD=0. Further experimentation examining the in vitro priming effect of MSCs with the pro-inflammatory cytokine interferon-γ treatment showed increased frequency of cells with ECM remodeling potential with higher MMP secretion. Thus, this culture surface can be used for studying the ECM remodeling capacity of ex vivo-expanded MSCs in vitro and may serve as a platform for prediction in vivo ECM remodeling effect. STATEMENT OF SIGNIFICANCE: The extracellular matrix (ECM) remodeling potential of cultured mesenchymal stem cells (MSCs) is important for assessing the effectiveness of MSC-based therapy. However, methods to assess the ability of cultured cells to degrade ECM in vitro are still lacking. Here, we developed a simple in vitro culture platform to study the ECM remodeling potential of cultured MSCs using high-density collagen surfaces. This platform was used to evaluate the ECM remodeling potential of long-term ex vivo-expanded MSCs in vitro.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shao Ying Tan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenichi Yamahara
- Laboratory of Molecular and Cellular Therapy, Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Research Base for Cell Manufacturability, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
31
|
Smolinska A, Bzinkowska A, Rybkowska P, Chodkowska M, Sarnowska A. Promising Markers in the Context of Mesenchymal Stem/Stromal Cells Subpopulations with Unique Properties. Stem Cells Int 2023; 2023:1842958. [PMID: 37771549 PMCID: PMC10533301 DOI: 10.1155/2023/1842958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
The heterogeneity of the mesenchymal stem/stromal cells (MSCs) population poses a challenge to researchers and clinicians, especially those observed at the population level. What is more, the lack of precise evidences regarding MSCs developmental origin even further complicate this issue. As the available evidences indicate several possible pathways of MSCs formation, this diverse origin may be reflected in the unique subsets of cells found within the MSCs population. Such populations differ in specialization degree, proliferation, and immunomodulatory properties or exhibit other additional properties such as increased angiogenesis capacity. In this review article, we attempted to identify such outstanding populations according to the specific surface antigens or intracellular markers. Described groups were characterized depending on their specialization and potential therapeutic application. The reports presented here cover a wide variety of properties found in the recent literature, which is quite scarce for many candidates mentioned in this article. Even though the collected information would allow for better targeting of specific subpopulations in regenerative medicine to increase the effectiveness of MSC-based therapies.
Collapse
Affiliation(s)
- Agnieszka Smolinska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Aleksandra Bzinkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Paulina Rybkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Magdalena Chodkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| |
Collapse
|
32
|
Yang X, Zong C, Feng C, Zhang C, Smirnov A, Sun G, Shao C, Zhang L, Hou X, Liu W, Meng Y, Zhang L, Shao C, Wei L, Melino G, Shi Y. Hippo Pathway Activation in Aged Mesenchymal Stem Cells Contributes to the Dysregulation of Hepatic Inflammation in Aged Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300424. [PMID: 37544916 PMCID: PMC10520691 DOI: 10.1002/advs.202300424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/14/2023] [Indexed: 08/08/2023]
Abstract
Aging is always accompanied by chronic diseases which probably attribute to long-term chronic inflammation in the aging body. Whereas, the mechanism of chronic inflammation in aging body is still obscure. Mesenchymal stem cells (MSCs) are capable of local chemotaxis to sites of inflammation and play a powerful role in immune regulation. Whether degeneration of MSCs in the aging body is associated with unbalanced inflammation is still not clear. In this study, immunosuppressive properties of aged MSCs are found to be repressed. The impaired immunosuppressive function of aged MSCs is associated with lower expression of the Hippo effector Yes-associated protein 1 (YAP1) and its target gene signal transducer and activator of transcription 1 (STAT1). YAP1 regulates the transcription of STAT1 through binding with its promoter. In conclusion, a novel YAP1/STAT1 axis maintaining immunosuppressive function of MSCs is revealed and impairment of this signal pathway in aged MSCs probably resulted in higher inflammation in aged mice liver.
Collapse
Affiliation(s)
- Xue Yang
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
- Department of Experimental MedicineTORUniversity of Rome Tor VergataRome00133Italy
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Chen Zong
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Chao Feng
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
- Department of Experimental MedicineTORUniversity of Rome Tor VergataRome00133Italy
| | - Cangang Zhang
- Department of Pathogenic Microbiology and ImmunologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Artem Smirnov
- Department of Experimental MedicineTORUniversity of Rome Tor VergataRome00133Italy
| | - Gangqi Sun
- Department of Clinical PharmacologyThe Second Hospital of Anhui Medical UniversityHefei230601China
| | - Changchun Shao
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022China
| | - Luyao Zhang
- Department of Clinical PharmacologyThe Second Hospital of Anhui Medical UniversityHefei230601China
| | - Xiaojuan Hou
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Wenting Liu
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Yan Meng
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Liying Zhang
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Gerry Melino
- Department of Experimental MedicineTORUniversity of Rome Tor VergataRome00133Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
| |
Collapse
|
33
|
Tang PW, Frisbie L, Hempel N, Coffman L. Insights into the tumor-stromal-immune cell metabolism cross talk in ovarian cancer. Am J Physiol Cell Physiol 2023; 325:C731-C749. [PMID: 37545409 DOI: 10.1152/ajpcell.00588.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
The ovarian cancer tumor microenvironment (TME) consists of a constellation of abundant cellular components, extracellular matrix, and soluble factors. Soluble factors, such as cytokines, chemokines, structural proteins, extracellular vesicles, and metabolites, are critical means of noncontact cellular communication acting as messengers to convey pro- or antitumorigenic signals. Vast advancements have been made in our understanding of how cancer cells adapt their metabolism to meet environmental demands and utilize these adaptations to promote survival, metastasis, and therapeutic resistance. The stromal TME contribution to this metabolic rewiring has been relatively underexplored, particularly in ovarian cancer. Thus, metabolic activity alterations in the TME hold promise for further study and potential therapeutic exploitation. In this review, we focus on the cellular components of the TME with emphasis on 1) metabolic signatures of ovarian cancer; 2) understanding the stromal cell network and their metabolic cross talk with tumor cells; and 3) how stromal and tumor cell metabolites alter intratumoral immune cell metabolism and function. Together, these elements provide insight into the metabolic influence of the TME and emphasize the importance of understanding how metabolic performance drives cancer progression.
Collapse
Affiliation(s)
- Priscilla W Tang
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Leonard Frisbie
- Department of Integrative Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Division of Gynecologic Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
34
|
Jing Y, Zhou J, Guo F, Yu L, Ren X, Yin X. Betaine regulates adipogenic and osteogenic differentiation of hAD-MSCs. Mol Biol Rep 2023; 50:5081-5089. [PMID: 37101008 DOI: 10.1007/s11033-023-08404-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND With an ageing population, the incidence of bone loss and obesity are increasing. Numerous studies emphasized the multidirectional differentiation ability of mesenchymal stem cells (MSCs), and reported betaine modulated the osteogenic differentiation and adipogenic differentiation of MSCs in vitro. We wondered how betaine affected the differentiation of hAD-MSCs and hUC-MSCs. METHODS AND RESULTS ALP staining and alizarin red S (ARS) staining were proved 10 mM betaine significantly increased the number of ALP-positive cells and plaque calcified extracellular matrices, accompanying by the up-regulation of OPN, Runx-2 and OCN. Oil red O staining demonstrated the number and size of lipid droplets were reduced, the expression of adipogenic master genes such as PPARγ, CEBPα and FASN were down-regulated simultaneously. For further investigating the mechanism of betaine on hAD-MSCs, RNA-seq was performed in none-differentiation medium. The Gene Ontology (GO) analysis showed fat cell differentiation and bone mineralization function terms were enriched, and KEGG showed PI3K-Akt signaling pathway, cytokine-cytokine receptor interaction and ECM-receptor interaction pathways were enriched in betaine treated hAD-MSCs, demonstrated betaine had a positive inducing effect on osteogenic of hAD-MSCs in the non-differentiation medium in vitro, which is opposite to the effect on adipogenic differentiation. CONCLUSIONS Our study demonstrated that betaine promoted osteogenic and compromised adipogenic differentiation of hUC-MSCs and hAD-MSCs upon low concentration administration. PI3K-Akt signaling pathway, cytokine-cytokine receptor interaction and ECM-receptor interaction were significantly enriched under betaine-treated. We showed hAD-MSCs were more sensitive to betaine stimulation and have a better differentiation ability than hUC-MSCs. Our results contributed to the exploration of betaine as an aiding agent for MSCs therapy.
Collapse
Affiliation(s)
- Yue Jing
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning Province, China
| | - Jian Zhou
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Fenghua Guo
- Jiangsu Pulu Rui Medical Technology Co., Ltd, Xuzhou, Jiangsu Province, China
| | - Lin Yu
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning Province, China
| | - Xiaomeng Ren
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning Province, China
| | - Xiushan Yin
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning Province, China.
| |
Collapse
|
35
|
Kawano Y, Kawano H, Ghoneim D, Fountaine TJ, Byun DK, LaMere MW, Mendler JH, Ho TC, Salama NA, Myers JR, Hussein SE, Frisch BJ, Ashton JM, Azadniv M, Liesveld JL, Kfoury Y, Scadden DT, Becker MW, Calvi LM. Myelodysplastic syndromes disable human CD271+VCAM1+CD146+ niches supporting normal hematopoietic stem/progenitor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.09.536176. [PMID: 37066307 PMCID: PMC10104201 DOI: 10.1101/2023.04.09.536176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) within the bone marrow microenvironment (BMME) support normal hematopoietic stem and progenitor cells (HSPCs). However, the heterogeneity of human MSCs has limited the understanding of their contribution to clonal dynamics and evolution to myelodysplastic syndromes (MDS). We combined three MSC cell surface markers, CD271, VCAM-1 (Vascular Cell Adhesion Molecule-1) and CD146, to isolate distinct subsets of human MSCs from bone marrow aspirates of healthy controls (Control BM). Based on transcriptional and functional analysis, CD271+CD106+CD146+ (NGFR+/VCAM1+/MCAM+/Lin-; NVML) cells display stem cell characteristics, are compatible with murine BM-derived Leptin receptor positive MSCs and provide superior support for normal HSPCs. MSC subsets from 17 patients with MDS demonstrated shared transcriptional changes in spite of mutational heterogeneity in the MDS clones, with loss of preferential support of normal HSPCs by MDS-derived NVML cells. Our data provide a new approach to dissect microenvironment-dependent mechanisms regulating clonal dynamics and progression of MDS.
Collapse
|
36
|
Wieder R. Fibroblasts as Turned Agents in Cancer Progression. Cancers (Basel) 2023; 15:2014. [PMID: 37046676 PMCID: PMC10093070 DOI: 10.3390/cancers15072014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Differentiated epithelial cells reside in the homeostatic microenvironment of the native organ stroma. The stroma supports their normal function, their G0 differentiated state, and their expansion/contraction through the various stages of the life cycle and physiologic functions of the host. When malignant transformation begins, the microenvironment tries to suppress and eliminate the transformed cells, while cancer cells, in turn, try to resist these suppressive efforts. The tumor microenvironment encompasses a large variety of cell types recruited by the tumor to perform different functions, among which fibroblasts are the most abundant. The dynamics of the mutual relationship change as the sides undertake an epic battle for control of the other. In the process, the cancer "wounds" the microenvironment through a variety of mechanisms and attracts distant mesenchymal stem cells to change their function from one attempting to suppress the cancer, to one that supports its growth, survival, and metastasis. Analogous reciprocal interactions occur as well between disseminated cancer cells and the metastatic microenvironment, where the microenvironment attempts to eliminate cancer cells or suppress their proliferation. However, the altered microenvironmental cells acquire novel characteristics that support malignant progression. Investigations have attempted to use these traits as targets of novel therapeutic approaches.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
37
|
Shan S, Li Q, Criswell T, Atala A, Zhang Y. Stem cell therapy combined with controlled release of growth factors for the treatment of sphincter dysfunction. Cell Biosci 2023; 13:56. [PMID: 36927578 PMCID: PMC10018873 DOI: 10.1186/s13578-023-01009-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Sphincter dysfunction often occurs at the end of tubule organs such as the urethra, anus, or gastroesophageal sphincters. It is the primary consequence of neuromuscular impairment caused by trauma, inflammation, and aging. Despite intensive efforts to recover sphincter function, pharmacological treatments have not achieved significant improvement. Cell- or growth factor-based therapy is a promising approach for neuromuscular regeneration and the recovery of sphincter function. However, a decrease in cell retention and viability, or the short half-life and rapid degradation of growth factors after implantation, remain obstacles to the translation of these therapies to the clinic. Natural biomaterials provide unique tools for controlled growth factor delivery, which leads to better outcomes for sphincter function recovery in vivo when stem cells and growth factors are co-administrated, in comparison to the delivery of single therapies. In this review, we discuss the role of stem cells combined with the controlled release of growth factors, the methods used for delivery, their potential therapeutic role in neuromuscular repair, and the outcomes of preclinical studies using combination therapy, with the hope of providing new therapeutic strategies to treat incontinence or sphincter dysfunction of the urethra, anus, or gastroesophageal tissues, respectively.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
38
|
Pinkhasov I, Kabakov L, Nemcovsky CE, Weinreb M, Schlesinger P, Bender O, Gal M, Bar DZ, Weinberg E. Single-cell transcriptomic analysis of oral masticatory and lining mucosa-derived mesenchymal stromal cells. J Clin Periodontol 2023; 50:807-818. [PMID: 36864739 DOI: 10.1111/jcpe.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/25/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
AIM To reveal the heterogeneity of ex vivo-cultured human mesenchymal stromal cells derived from either masticatory or lining oral mucosa. MATERIALS AND METHODS Cells were retrieved from the lamina propria of the hard palate and alveolar mucosa of three individuals. The analysis of transcriptomic-level differences was accomplished using single-cell RNA sequencing. RESULTS Cluster analysis clearly distinguished between cells from the masticatory and lining oral mucosa, and revealed 11 distinct cell sub-populations, annotated as fibroblasts, smooth muscle cells or mesenchymal stem cells. Interestingly, cells presenting a mesenchymal stem cell-like gene expression pattern were predominantly found in masticatory mucosa. Although cells of masticatory mucosa origin were highly enriched for biological processes associated with wound healing, those from the lining oral mucosa were highly enriched for biological processes associated with the regulation of epithelial cells. CONCLUSIONS Our previous work had shown that cells from the lining and masticatory oral mucosae are phenotypically heterogeneous. Here, we extend these findings to show that these changes are not the result of differences in averages but rather represent two distinct cell populations, with mesenchymal stem cells more common in masticatory mucosa. These features may contribute to specific physiological functions and have relevance for potential therapeutic interventions.
Collapse
Affiliation(s)
- Ilan Pinkhasov
- Department of Oral Biology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liron Kabakov
- Department of Oral Biology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carlos E Nemcovsky
- Department of Periodontology and Oral Implantology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Miron Weinreb
- Department of Oral Biology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pnina Schlesinger
- Department of Oral Biology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Omer Bender
- Department of Oral Biology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maayan Gal
- Department of Oral Biology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Z Bar
- Department of Oral Biology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Evgeny Weinberg
- Department of Oral Biology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Periodontology and Oral Implantology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
39
|
Matthews EZ, Lanham S, White K, Kyriazi ME, Alexaki K, El-Sagheer AH, Brown T, Kanaras AG, J West J, MacArthur BD, Stumpf PS, Oreffo ROC. Single-cell RNA-sequence analysis of human bone marrow reveals new targets for isolation of skeletal stem cells using spherical nucleic acids. J Tissue Eng 2023; 14:20417314231169375. [PMID: 37216034 PMCID: PMC10192814 DOI: 10.1177/20417314231169375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/24/2023] [Indexed: 05/24/2023] Open
Abstract
There is a wealth of data indicating human bone marrow contains skeletal stem cells (SSC) with the capacity for osteogenic, chondrogenic and adipogenic differentiation. However, current methods to isolate SSCs are restricted by the lack of a defined marker, limiting understanding of SSC fate, immunophenotype, function and clinical application. The current study applied single-cell RNA-sequencing to profile human adult bone marrow populations from 11 donors and identified novel targets for SSC enrichment. Spherical nucleic acids were used to detect these mRNA targets in SSCs. This methodology was able to rapidly isolate potential SSCs found at a frequency of <1 in 1,000,000 in human bone marrow, with the capacity for tri-lineage differentiation in vitro and ectopic bone formation in vivo. The current studies detail the development of a platform to advance SSC enrichment from human bone marrow, offering an invaluable resource for further SSC characterisation, with significant therapeutic impact therein.
Collapse
Affiliation(s)
- Elloise Z Matthews
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
| | - Stuart Lanham
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Cancer Sciences, Faculty of Medicine,
University of Southampton, Southampton, UK
| | - Kate White
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
| | - Maria-Eleni Kyriazi
- College of Engineering and Technology,
American University of the Middle East, Kuwait
| | - Konstantina Alexaki
- Physics and Astronomy, Faculty of
Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Afaf H El-Sagheer
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford, Oxford, UK
- Chemistry Branch, Department of Science
and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez,
Egypt
| | - Tom Brown
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford, Oxford, UK
| | - Antonios G Kanaras
- Physics and Astronomy, Faculty of
Physical Sciences and Engineering, University of Southampton, Southampton, UK
- Institute for Life Sciences, University
of Southampton, Southampton, UK
| | - Jonathan J West
- Cancer Sciences, Faculty of Medicine,
University of Southampton, Southampton, UK
- Physics and Astronomy, Faculty of
Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Ben D MacArthur
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University
of Southampton, Southampton, UK
- Mathematical Sciences, University of
Southampton, Southampton, UK
| | - Patrick S Stumpf
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Joint Research Center for Computational
Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Richard OC Oreffo
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University
of Southampton, Southampton, UK
- College of Biomedical Engineering,
China Medical University, Taichung, Taiwan
| |
Collapse
|
40
|
Frisbie L, Buckanovich RJ, Coffman L. Carcinoma Associated Mesenchymal Stem/Stromal Cells - Architects of the Pro-tumorigenic tumor microenvironment. Stem Cells 2022; 40:705-715. [PMID: 35583414 PMCID: PMC9406606 DOI: 10.1093/stmcls/sxac036] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022]
Abstract
The interaction between tumor cells and non-malignant hosts cells within the tumor microenvironment (TME) is critical to the pathophysiology of cancer. These non-malignant host cells, consisting of a variety of stromal, immune and endothelial cells, engage in a complex bidirectional crosstalk with the malignant tumor cells. Mesenchymal stem/stromal cells (MSCs) are one of these host cells, and they play a critical role in directing the formation and function of the entire TME. These MSCs are epigenetically reprogrammed by cancer cells to assume a strongly pro-tumorigenic phenotype and are referred to as carcinoma-associated mesenchymal stem/stromal cells (CA-MSCs). Studies over the last decade demonstrate that CA-MSCs not only directly interact with cancer cells to promote tumor growth and metastasis, but also orchestrate the formation of the TME. CA-MSCs can differentiate into virtually all stromal sub-lineages present in the TME, including pro-tumorigenic cancer associated fibroblasts (CAF), myofibroblasts, and adipocytes. CA-MSCs and the CAFs they produce, secrete much of the extracellular matrix in the TME. Furthermore, CA-MSC secreted factors promote angiogenesis, and recruit immunosuppressive myeloid cells effectively driving tumor immune exclusion. Thus CA-MSCs impact nearly every aspect of the TME. Despite their influence on cancer biology, as CA-MSCs represent a heterogenous population without a single definitive marker, significant confusion remains regarding the origin and proper identification CA-MSCs. This review will focus on the impact of CA-MSCs on cancer progression and metastasis and the ongoing work on CA-MSC identification, nomenclature and mechanism of action.
Collapse
Affiliation(s)
- Len Frisbie
- Department of Integrative Systems Biology, University of Pittsburgh, Pittsburgh, PA
| | - Ronald J Buckanovich
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|