1
|
De Bon F, Vaz Simões A, Serra AC, Coelho JFJ. Alternating and Pulsed Current Electrolysis for Atom Transfer Radical Polymerization. Chempluschem 2024:e202400661. [PMID: 39620913 DOI: 10.1002/cplu.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Indexed: 12/12/2024]
Abstract
This concept focuses on the application of alternating current (AC) and pulsed electrolysis in Atom Transfer Radical Polymerization (ATRP) for polymer synthesis. AC electrolysis, which oscillates between reduction and oxidation, can be tuned to increase selectivity for a specific reaction pathway, minimize side reactions, and improve product selectivity and reagent conversion. Pulsed electrolysis can also be used to sustain electrochemical reactions in ATRP. The challenges and limitations associated with AC electrolysis are discussed along with an outlook on future developments in polymer synthesis and related applications. A concise overview of recent developments in electro-organic synthesis using AC electrolysis will be provided.
Collapse
Affiliation(s)
- Francesco De Bon
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Alexandre Vaz Simões
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Armenio C Serra
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Jorge F J Coelho
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199, Coimbra, Portugal
| |
Collapse
|
2
|
Poh YR, Kawamata Y, Yuen-Zhou J. Physicochemical Principles of AC Electrosynthesis: Reversible Reactions. J Am Chem Soc 2024; 146:24978-24988. [PMID: 39214628 DOI: 10.1021/jacs.4c06664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Electrolysis integrates renewable energy into chemical manufacturing and is key to sustainable chemistry. Controlling the waveform beyond direct current (DC) addresses the long-standing obstacle of chemoselectivity, yet it also expands the parameter set to optimize, creating a demand for theoretical predictions. Here, we report the first analytical theory for predicting chemoselectivity in an alternating current (AC) electrosynthesis. The mechanism is a selective reversal of the unwanted redox reaction during periods of opposite polarity, reflected in the final reaction outcome as a time-averaged effect. In the ideal scenario of all redox reactions being reversible, square AC waveform biases the outcome toward more overoxidation/over-reduction, whereas sine AC waveform exhibits the opposite effect. However, in a more realistic scenario of some redox reactions being quasi-reversible, sine AC may behave mostly like square AC. These predictions are in numerical agreement with model experiments employing acetophenone and align qualitatively with the literature precedent. Collectively, this study provides theoretical proof for a growing trend that promotes changing waveforms to overcome limitations challenging to address by varying canonical electrochemical parameters.
Collapse
Affiliation(s)
- Yong Rui Poh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Yuan GC, Gao FL, Liu KW, Li M, Lin Y, Ye KY. Batch and Continuous-Flow Electrochemical Geminal Difluorination of Indeno[1,2- c]furans. Org Lett 2024; 26:6059-6064. [PMID: 38968416 DOI: 10.1021/acs.orglett.4c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
An electrochemical gem-difluorination of indeno[1,2-c]furans using commercially available and easy-to-use triethylamine trihydrofluoride as both the electrolyte and fluorinating agent was developed. Remarkably, different reaction pathways of indeno[1,2-c]furans, i.e., paired electrolysis and net oxidation, are operative in a batch reactor and a continuous-flow microreactor to afford the corresponding gem-difluorinated indanones and indenones, respectively.
Collapse
Affiliation(s)
- Guo-Cai Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Fang-Ling Gao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Kang-Wei Liu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Minggang Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuqi Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
4
|
De Bon F, Fantin M, Pereira VA, Lourenço Bernardino TJ, Serra AC, Matyjaszewski K, Coelho JFJ. Electrochemically Mediated Atom Transfer Radical Polymerization Driven by Alternating Current. Angew Chem Int Ed Engl 2024; 63:e202406484. [PMID: 38647172 DOI: 10.1002/anie.202406484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Alternating current (AC) and pulsed electrolysis are gaining traction in electro(organic) synthesis due to their advantageous characteristics. We employed AC electrolysis in electrochemically mediated Atom Transfer Radical Polymerization (eATRP) to facilitate the regeneration of the activator CuI complex on Cu0 electrodes. Additionally, Cu0 served as a slow supplemental activator and reducing agent (SARA ATRP), enabling the activation of alkyl halides and the regeneration of the CuI activator through a comproportionation reaction. We harnessed the distinct properties of Cu0 dual regeneration, both chemical and electrochemical, by employing sinusoidal, triangular, and square-wave AC electrolysis alongside some of the most active ATRP catalysts available. Compared to linear waveform (DC electrolysis) or SARA ATRP (without electrolysis), pulsed and AC electrolysis facilitated slightly faster and more controlled polymerizations of acrylates. The same AC electrolysis conditions could successfully polymerize eleven different monomers across different mediums, from water to bulk. Moreover, it proved effective across a spectrum of catalyst activity, from low-activity Cu/2,2-bipyridine to highly active Cu complexes with substituted tripodal amine ligands. Chain extension experiments confirmed the high chain-end fidelity of the produced polymers, yielding functional and high molecular-weight block copolymers. SEM analysis indicated the robustness of the Cu0 electrodes, sustaining at least 15 consecutive polymerizations.
Collapse
Affiliation(s)
- Francesco De Bon
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Marco Fantin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131, Padova, Italy
| | - Vanessa A Pereira
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Teresa J Lourenço Bernardino
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Armenio C Serra
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, 15213, Pittsburgh, PA, USA
| | - Jorge F J Coelho
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199, Coimbra, Portugal
| |
Collapse
|
5
|
Hou JC, Jiang J, Wen YC, Zeng YY, Lu YH, Wang JS, Ou LJ, He WM. Paired Electrolysis-Enabled Arylation of Quinoxalin-2(1 H)-ones. J Org Chem 2024; 89:6117-6125. [PMID: 38654588 DOI: 10.1021/acs.joc.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The first paired electrolysis-enabled arylation of quinoxalin-2(1H)-ones was achieved using cyanoarenes as the arylation reagents. A variety of 3-arylquinoxalin-2(1H)-ones with various important functional groups were obtained in moderate to good yields under metal- and chemical oxidant-free conditions. With a pair of reductive and oxidative processes occurring among the substrates and reaction intermediates, the power consumption can be dramatically reduced.
Collapse
Affiliation(s)
- Jia-Cheng Hou
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Yan-Cui Wen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Yan-Yan Zeng
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Yu-Han Lu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia-Sheng Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Li-Juan Ou
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
6
|
Behera N, Gunasekera D, Mahajan JP, Frimpong J, Liu ZF, Luo L. Electrochemical hydrogen isotope exchange of amines controlled by alternating current frequency. Faraday Discuss 2023; 247:45-58. [PMID: 37466111 PMCID: PMC10796833 DOI: 10.1039/d3fd00044c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Here, we report an electrochemical protocol for hydrogen isotope exchange (HIE) at α-C(sp3)-H amine sites. Tetrahydroisoquinoline and pyrrolidine are selected as two model substrates because of their different proton transfer (PT) and hydrogen atom transfer (HAT) kinetics at the α-C(sp3)-H amine sites, which are utilized to control the HIE reaction outcome at different applied alternating current (AC) frequencies. We found the highest deuterium incorporation for tetrahydroisoquinolines at 0 Hz (i.e., under direct current (DC) electrolysis conditions) and pyrrolidines at 0.5 Hz. Analysis of the product distribution and D isotope incorporation at different frequencies reveals that the HIE of tetrahydroisoquinolines is limited by its slow HAT, whereas the HIE of pyrrolidines is limited by the overoxidation of its α-amino radical intermediates. The AC-frequency-dependent HIE of amines can be potentially used to achieve selective labeling of α-amine sites in one drug molecule, which will significantly impact the pharmaceutical industry.
Collapse
Affiliation(s)
- Nibedita Behera
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Disni Gunasekera
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Jyoti P Mahajan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Joseph Frimpong
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Zhen-Fei Liu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
7
|
Garrido-Castro AF, Hioki Y, Kusumoto Y, Hayashi K, Griffin J, Harper KC, Kawamata Y, Baran PS. Scalable Electrochemical Decarboxylative Olefination Driven by Alternating Polarity. Angew Chem Int Ed Engl 2023; 62:e202309157. [PMID: 37656907 DOI: 10.1002/anie.202309157] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
A mild, scalable (kg) metal-free electrochemical decarboxylation of alkyl carboxylic acids to olefins is disclosed. Numerous applications are presented wherein this transformation can simplify alkene synthesis and provide alternative synthetic access to valuable olefins from simple carboxylic acid feedstocks. This robust method relies on alternating polarity to maintain the quality of the electrode surface and local pH, providing a deeper understanding of the Hofer-Moest process with unprecedented chemoselectivity.
Collapse
Affiliation(s)
- Alberto F Garrido-Castro
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| | - Yuta Hioki
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Science and Innovation Center, Mitsubishi Chemical Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-8502, Japan
| | - Yoshifumi Kusumoto
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kyohei Hayashi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jeremy Griffin
- AbbVie Process Research and Development, 1401 North Sheridan Road, North Chicago, IL, 60064, USA
| | - Kaid C Harper
- AbbVie Process Research and Development, 1401 North Sheridan Road, North Chicago, IL, 60064, USA
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
8
|
Rodrigo S, Hazra A, Mahajan JP, Nguyen HM, Luo L. Overcoming the Potential Window-Limited Functional Group Compatibility by Alternating Current Electrolysis. J Am Chem Soc 2023; 145:21851-21859. [PMID: 37747918 PMCID: PMC10774024 DOI: 10.1021/jacs.3c05802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The functional group compatibility of an electrosynthetic method is typically limited by its potential reaction window. Here, we report that alternating current (AC) electrolysis can overcome such potential window-limited functional group compatibility. Using alkene heterodifunctionalization as a model system, we design and demonstrate a series of AC-driven reactions that add two functional groups sequentially and separately under the cathodic and anodic pulses, including chloro- and bromotrilfuoromethylation as well as chlorosulfonylation. We discovered that the oscillating redox environment during AC electrolysis allows the regeneration of the redox-active functional groups after their oxidation or reduction in the preceding step. As a result, even though redox labile functional groups such as pyrrole, quinone, and aryl thioether fall in the reaction potential window, they are tolerated under AC electrolysis conditions, leading to synthetically useful yields. The cyclic voltammetric study has confirmed that the product yield is limited by the extent of starting material regeneration during the redox cycling. Our findings open a new avenue for improving functional group compatibility in electrosynthesis and show the possibility of predicting the product yield under AC electrolysis from voltammogram features.
Collapse
Affiliation(s)
- Sachini Rodrigo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Atanu Hazra
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jyoti P Mahajan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
9
|
Wan Q, Chen K, Dong X, Ruan X, Yi H, Chen S. Elucidating the Underlying Reactivities of Alternating Current Electrosynthesis by Time-Resolved Mapping of Short-Lived Reactive Intermediates. Angew Chem Int Ed Engl 2023; 62:e202306460. [PMID: 37593930 DOI: 10.1002/anie.202306460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
Alternating current (AC) electrolysis is an emerging field in synthetic chemistry, however its mechanistic studies are challenged by the effective characterization of the elusive intermediate processes. Herein, we develop an operando electrochemical mass spectrometry platform that allows time-resolved mapping of stepwise electrosynthetic reactive intermediates in both direct current and alternating current modes. By dissecting the key intermediate processes of electrochemical functionalization of arylamines, the unique reactivities of AC electrosynthesis, including minimizing the over-oxidation/reduction through the inverse process, and enabling effective reaction of short-lived intermediates generated by oxidation and reduction in paired electrolysis, were evidenced and verified. Notably, the controlled kinetics of reactive N-centered radical intermediates in multistep sequential AC electrosynthesis to minimize the competing reactions was discovered. Overall, this work provides direct evidence for the mechanism of AC electrolysis, and clarifies the underlying reasons for its high efficiency, which will benefit the rational design of AC electrosynthetic reactions.
Collapse
Affiliation(s)
- Qiongqiong Wan
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Kaixiang Chen
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xin Dong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xianqin Ruan
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Suming Chen
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
10
|
Hioki Y, Costantini M, Griffin J, Harper KC, Merini MP, Nissl B, Kawamata Y, Baran PS. Overcoming the limitations of Kolbe coupling with waveform-controlled electrosynthesis. Science 2023; 380:81-87. [PMID: 37023204 DOI: 10.1126/science.adf4762] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/14/2023] [Indexed: 04/08/2023]
Abstract
The Kolbe reaction forms carbon-carbon bonds through electrochemical decarboxylative coupling. Despite more than a century of study, the reaction has seen limited applications owing to extremely poor chemoselectivity and reliance on precious metal electrodes. In this work, we present a simple solution to this long-standing challenge: Switching the potential waveform from classical direct current to rapid alternating polarity renders various functional groups compatible and enables the reaction on sustainable carbon-based electrodes (amorphous carbon). This breakthrough enabled access to valuable molecules that range from useful unnatural amino acids to promising polymer building blocks from readily available carboxylic acids, including biomass-derived acids. Preliminary mechanistic studies implicate the role of waveform in modulating the local pH around the electrodes and the crucial role of acetone as an unconventional reaction solvent for Kolbe reaction.
Collapse
Affiliation(s)
- Yuta Hioki
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
- Science and Innovation Center, Mitsubishi Chemical Corporation, Aoba-ku, Yokohama, Kanagawa, 227-8502, Japan
| | | | - Jeremy Griffin
- Abbvie Process Research and Development, North Chicago, IL 60064, USA
| | - Kaid C Harper
- Abbvie Process Research and Development, North Chicago, IL 60064, USA
| | | | - Benedikt Nissl
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Phil S Baran
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Guo P, Ye KY. Alternating the current direction. Science 2023; 380:34-35. [PMID: 37023181 DOI: 10.1126/science.adh1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Waveform-controlled electrolysis enables the carbon-carbon coupling of carboxylic acids.
Collapse
Affiliation(s)
- Peng Guo
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, China
| |
Collapse
|
12
|
M T, Callum. Emerging radical rearrangement reactions: The 1,2-boron shift. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
13
|
Gunasekera D, Mahajan JP, Wanzi Y, Rodrigo S, Liu W, Tan T, Luo L. Controlling One- or Two-Electron Oxidation for Selective Amine Functionalization by Alternating Current Frequency. J Am Chem Soc 2022; 144:9874-9882. [PMID: 35622985 PMCID: PMC9199481 DOI: 10.1021/jacs.2c02605] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here, we report a unique electrosynthetic method that enables the selective one-electron oxidation of tertiary amines to generate α-amino radical intermediates over two-electron oxidation to iminium cations, providing easy access to arylation products by simply applying an optimal alternating current (AC) frequency. More importantly, we have discovered an electrochemical descriptor from cyclic voltammetry studies to predict the optimal AC frequency for various amine substrates, circumventing the time-consuming trial-and-error methods for optimizing reaction conditions. This new development in AC electrolysis provides an alternative strategy to solving challenging chemoselectivity problems in synthetic organic chemistry.
Collapse
Affiliation(s)
- Disni Gunasekera
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jyoti P Mahajan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Yanick Wanzi
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Sachini Rodrigo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Wei Liu
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Ting Tan
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
14
|
Hou ZW, Zhang MM, Yang WC, Wang L. Catalyst- and Oxidizing Reagent-Free Electrochemical Benzylic C(sp 3)-H Oxidation of Phenol Derivatives. J Org Chem 2022; 87:7806-7817. [PMID: 35648817 DOI: 10.1021/acs.joc.2c00455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A site-selective electrochemical approach for the benzylic C(sp3)-H oxidation reaction of phenol derivatives along with hydrogen evolution has been developed. The protocol proceeds in an easily available undivided cell at room temperature under catalyst- and oxidizing reagent-free conditions. The corresponding aryl aldehydes and ketones are obtained in satisfactory yields, and the gram-scale synthesis is easy to be carried out.
Collapse
Affiliation(s)
- Zhong-Wei Hou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang, Taizhou 318000, P. R. China
| | - Ming-Ming Zhang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, Yangzhou 225009, P. R. China
| | - Wen-Chao Yang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, Yangzhou 225009, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang, Taizhou 318000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| |
Collapse
|