1
|
Xu K, Guo H, Xia A, Wang Z, Wang S, Wang Q. Non-coding RNAs in radiotherapy resistance: Roles and therapeutic implications in gastrointestinal cancer. Biomed Pharmacother 2023; 161:114485. [PMID: 36917887 DOI: 10.1016/j.biopha.2023.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Radiotherapy has become an indispensable and conventional means for patients with advanced solid tumors including gastrointestinal cancer. However, innate or acquired radiotherapy resistance remains a significant challenge and greatly limits the therapeutic effect, which results in cancer relapse and poor prognosis. Therefore, it is an urgent need to identify novel biomarkers and therapeutic targets for clarify the biological characteristics and mechanism of radiotherapy resistance. Recently, lots of studies have revealed that non-coding RNAs (ncRNAs) are the potential indicators and regulators of radiotherapy resistance via the mediation of various targets/pathways in different cancers. These findings may serve as a potential therapeutic strategy to overcome radiotherapy resistance. In this review, we will shed light on the recent findings regarding the functions and regulatory mechanisms of ncRNAs following radiotherapy, and comprehensively discuss their potential as biomarkers and therapeutic targets in radiotherapy resistance of gastrointestinal cancer.
Collapse
Affiliation(s)
- Kaiyue Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Department of Radiation Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou 215000, China
| | - Huimin Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Anliang Xia
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China.
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Medical Transformation Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China.
| |
Collapse
|
2
|
Qiu Z, Chu Y, Xu B, Wang Q, Jiang M, Li X, Wang G, Yu P, Liu G, Wang H, Kang H, Liu J, Zhang Y, Jin JP, Wu K, Liang J. Increased expression of calponin 2 is a positive prognostic factor in pancreatic ductal adenocarcinoma. Oncotarget 2017; 8:56428-56442. [PMID: 28915602 PMCID: PMC5593573 DOI: 10.18632/oncotarget.17701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/10/2017] [Indexed: 02/06/2023] Open
Abstract
Calponin 2 plays an important role in regulating actin cytoskeleton, which is critical for cell division and migration. Previous studies have demonstrated that calponin 2 inhibits prostate cancer cell proliferation and metastasis. However, the role of calponin 2 in pancreatic tumor growth, metastasis and patient survival remains unclear. Here, we demonstrate that the level of calponin 2 is a positive prognostic factor for patients with pancreatic ductal adenocarcinoma (PDAC). Patients with high calponin 2 expression in the tumor presented less lymph node metastasis and longer survival. Knockdown of calponin 2 facilitated pancreatic cancer cell proliferation and metastasis. Further experiments suggested that PI3K/AKT, NF-κB, Vimentin, Fibronectin, Snail and Slug were upregulated and E-cadherin was downregulated after calponin 2 was knocked down, implicating altered functions in PDAC proliferation and metastasis. In addition, we verified that calponin 2 functioned through inhibiting PI3K/AKT and NF-κB pathways. Our study suggests that the upregulation of calponin 2 in PDAC correlates to lower malignancy and presents a novel target for the development of new treatment.
Collapse
Affiliation(s)
- Zhaoyan Qiu
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Yi Chu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bing Xu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Qian Wang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mingzuo Jiang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaowei Li
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Pengfei Yu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Guoxiao Liu
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Hua Wang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Huijie Kang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiayu Liu
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Yu Zhang
- Department of Cardiovascular Surgery, General Hospital of Lanzhou Military Area Command, Lanzhou, China
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jie Liang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Detappe A, Kunjachan S, Sancey L, Motto-Ros V, Biancur D, Drane P, Guieze R, Makrigiorgos GM, Tillement O, Langer R, Berbeco R. Advanced multimodal nanoparticles delay tumor progression with clinical radiation therapy. J Control Release 2016; 238:103-113. [PMID: 27423325 DOI: 10.1016/j.jconrel.2016.07.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/29/2016] [Accepted: 07/12/2016] [Indexed: 11/28/2022]
Abstract
Radiation therapy is a major treatment regimen for more than 50% of cancer patients. The collateral damage induced on healthy tissues during radiation and the minimal therapeutic effect on the organ-of-interest (target) is a major clinical concern. Ultra-small, renal clearable, silica based gadolinium chelated nanoparticles (SiGdNP) provide simultaneous MR contrast and radiation dose enhancement. The high atomic number of gadolinium provides a large photoelectric cross-section for increased photon interaction, even for high-energy clinical radiation beams. Imaging and therapy functionality of SiGdNP were tested in cynomolgus monkeys and pancreatic tumor-bearing mice models, respectively. A significant improvement in tumor cell damage (double strand DNA breaks), growth suppression, and overall survival under clinical radiation therapy conditions were observed in a human pancreatic xenograft model. For the first time, safe systemic administration and systematic renal clearance was demonstrated in both tested species. These findings strongly support the translational potential of SiGdNP for MR-guided radiation therapy in cancer treatment.
Collapse
Affiliation(s)
- Alexandre Detappe
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Lyon-1 University, Institut Lumière Matière, CNRS UMR5306, Lyon, France
| | - Sijumon Kunjachan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Lucie Sancey
- Lyon-1 University, Institut Lumière Matière, CNRS UMR5306, Lyon, France
| | - Vincent Motto-Ros
- Lyon-1 University, Institut Lumière Matière, CNRS UMR5306, Lyon, France
| | - Douglas Biancur
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Pascal Drane
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Romain Guieze
- Division of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - G Mike Makrigiorgos
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Olivier Tillement
- Lyon-1 University, Institut Lumière Matière, CNRS UMR5306, Lyon, France
| | - Robert Langer
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ross Berbeco
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
4
|
Kim SK, Wu CC, Horowitz DP. Stereotactic body radiotherapy for the pancreas: a critical review for the medical oncologist. J Gastrointest Oncol 2016; 7:479-86. [PMID: 27284482 DOI: 10.21037/jgo.2015.10.01] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With recent advances in imaging modalities and radiation therapy, stereotactic body radiotherapy (SBRT) has allowed for the delivery of high doses of radiation with accuracy and precision. As such, SBRT has generated favorable results in the treatment of several cancers. Although the role of radiation has been controversial for the treatment of pancreatic ductal adenocarcinoma (PDAC) due to rather lackluster results in clinical trials, SBRT may offer improved outcomes, enhance the quality of life, and aid in palliative care settings for PDAC patients. This review delineates the role of SBRT in the treatment of PDAC, presents the defining principles of radiation biology and the radiation oncology work flow, and discusses the prospects of new treatment regimens involving tumor immunology and radiation therapy.
Collapse
Affiliation(s)
- Samuel K Kim
- Department of Radiation Oncology, New York Presbyterian Hospital, Columbia University Medical Center, New York, NY 10032, USA
| | - Cheng-Chia Wu
- Department of Radiation Oncology, New York Presbyterian Hospital, Columbia University Medical Center, New York, NY 10032, USA
| | - David P Horowitz
- Department of Radiation Oncology, New York Presbyterian Hospital, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
5
|
Jin L, Wang R, Jiang S, Yue J, Liu T, Dou X, Zhu K, Feng R, Xu X, Chen D, Yin Y. Dosimetric and clinical toxicity comparison of critical organ preservation with three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, and RapidArc for the treatment of locally advanced cancer of the pancreatic head. ACTA ACUST UNITED AC 2016; 23:e41-8. [PMID: 26966412 DOI: 10.3747/co.23.2771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE We compared dosimetry and clinical toxicity for 3-dimensional conformal radiotherapy (3D-crt), intensity-modulated radiotherapy (imrt), and RapidArc (Varian Medical Systems, Palo Alto, CA, U.S.A.) in locally advanced pancreatic cancer (lapcc). We hypothesized that the technique with better sparing of organs at risk (oars) and better target dose distributions could lead to decreased clinical toxicity. METHODS The study analyzed 280 patients with lapcc who had undergone radiotherapy. The dosimetry comparison was performed using 20 of those patients. Dose-volume histograms for the target volume and the oars were compared. The clinical toxicity comparison used the 280 patients who received radiation with 3D-crt, imrt, or RapidArc. RESULTS Compared with 3D-crt, RapidArc and imrt both achieved a better conformal index, homogeneity index, V95%, and V110%. Compared with 3D-crt or imrt, RapidArc reduced the V10, V20, and mean dose to duodenum, the V20 of the right kidney, and the liver mean dose. Compared with 3D-crt, RapidArc reduced the V35, and V45 of duodenum, the mean dose to small bowel, and the V15 of right kidney. The incidences of grades 3 and 4 diarrhea (p = 0.037) and anorexia (p = 0.042) were lower with RapidArc than with 3D-crt, and the incidences of grades 3 and 4 diarrhea (p = 0.027) were lower with RapidArc than with imrt. CONCLUSIONS Compared with 3D-crt or imrt, RapidArc showed better sparing of oars, especially duodenum, small bowel, and right kidney. Also, fewer acute grades 3 and 4 gastrointestinal toxicities were seen with RapidArc than with 3D-crt or imrt. A technique with better sparing of oars and better target dose distributions could result in decreased clinical toxicities during radiation treatment for lapcc.
Collapse
Affiliation(s)
- L Jin
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R.C.;; School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, P.R.C
| | - R Wang
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R.C
| | - S Jiang
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R.C
| | - J Yue
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R.C
| | - T Liu
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R.C
| | - X Dou
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R.C
| | - K Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R.C
| | - R Feng
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R.C
| | - X Xu
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R.C
| | - D Chen
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R.C.;; School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, P.R.C
| | - Y Yin
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R.C
| |
Collapse
|
6
|
Comparison of toxicity after IMRT and 3D-conformal radiotherapy for patients with pancreatic cancer – A systematic review. Radiother Oncol 2015; 114:117-21. [DOI: 10.1016/j.radonc.2014.11.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 12/13/2022]
|
7
|
Trakul N, Koong AC, Chang DT. Stereotactic body radiotherapy in the treatment of pancreatic cancer. Semin Radiat Oncol 2014; 24:140-7. [PMID: 24635871 DOI: 10.1016/j.semradonc.2013.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most patients diagnosed with pancreatic cancer are unable to have a curative surgical resection. Chemoradiation is a standard of care treatment for patients with locally advanced unresectable disease, but local failure rates are high with conventionally fractionated radiotherapy. However, stereotactic body radiotherapy (SBRT) or stereotactic ablative radiotherapy offers an alternative type of radiation therapy, which allows for the delivery of high-dose, conformal radiation. The high doses and shorter overall treatment time with SBRT may provide advantages in local control, disease outcomes, quality of life, and cost-effectiveness, and further investigation is currently underway. Here, we review the technology behind SBRT for pancreatic malignancy and its future direction in the overall management of pancreatic cancer.
Collapse
Affiliation(s)
- Nicholas Trakul
- Department of Radiation Oncology, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Albert C Koong
- Department of Radiation Oncology, Stanford University School of Medicine and Cancer Center, Stanford, CA
| | - Daniel T Chang
- Department of Radiation Oncology, Stanford University School of Medicine and Cancer Center, Stanford, CA.
| |
Collapse
|
8
|
Li L, Hao X, Qin J, Tang W, He F, Smith A, Zhang M, Simeone DM, Qiao XT, Chen ZN, Lawrence TS, Xu L. Antibody against CD44s inhibits pancreatic tumor initiation and postradiation recurrence in mice. Gastroenterology 2014; 146:1108-18. [PMID: 24397969 PMCID: PMC3982149 DOI: 10.1053/j.gastro.2013.12.035] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS CD44s is a surface marker of tumor-initiating cells (TICs); high tumor levels correlate with metastasis and recurrence, as well as poor outcomes for patients. Monoclonal antibodies against CD44s might eliminate TICs with minimal toxicity. This strategy is unclear for treatment of pancreatic cancer, and little is known about how anti-CD44s affect pancreatic cancer initiation or recurrence after radiotherapy. METHODS One hundred ninety-two pairs of human pancreatic adenocarcinoma and adjacent nontumor pancreatic tissues were collected from patients undergoing surgery. We measured CD44s levels in tissue samples and pancreatic cancer cell lines by immunohistochemistry, real-time polymerase chain reaction, and immunoblot; levels were correlated with patient survival times. We studied the effects of anti-CD44s in mice with human pancreatic tumor xenografts and used flow cytometry to determine the effects on TICs. Changes in CD44s signaling were examined by real-time polymerase chain reaction, immunoblot, reporter assay, and in vitro tumorsphere formation assays. RESULTS Levels of CD44s were significantly higher in pancreatic cancer than adjacent nontumor tissues. Patients whose tumors expressed high levels of CD44s had a median survival of 10 months compared with >43 months for those with low levels. Anti-CD44s reduced growth, metastasis, and postradiation recurrence of pancreatic xenograft tumors in mice. The antibody reduced the number of TICs in cultured pancreatic cancer cells and xenograft tumors, as well as their tumorigenicity. In cultured pancreatic cancer cell lines, anti-CD44s down-regulated the stem cell self-renewal genes Nanog, Sox-2, and Rex-1 and inhibited signal transducer and activator of transcription 3-mediated cell proliferation and survival signaling. CONCLUSIONS The TIC marker CD44s is up-regulated in human pancreatic tumors and associated with patient survival time. CD44s is required for initiation, growth, metastasis, and postradiation recurrence of xenograft tumors in mice. Anti-CD44s eliminated bulk tumor cells as well as TICs from the tumors. Strategies to target CD44s cab be developed to block pancreatic tumor formation and post-radiotherapy recurrence in patients.
Collapse
Affiliation(s)
- Ling Li
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan; Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Xinbao Hao
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan; Department of Hematology/Oncology, Hainan Medical College Hospital, Haikou, Hainan, P.R. China
| | - Jun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Wenhua Tang
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan; Departments of Molecular Biosciences and Radiation Oncology, University of Kansas, Lawrence, Kansas
| | - Fengtian He
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Amber Smith
- Departments of Molecular Biosciences and Radiation Oncology, University of Kansas, Lawrence, Kansas
| | - Min Zhang
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Diane M Simeone
- Department of Surgery, Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Xiaotan T Qiao
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Zhi-Nan Chen
- Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China.
| | - Theodore S Lawrence
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Liang Xu
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan; Departments of Molecular Biosciences and Radiation Oncology, University of Kansas, Lawrence, Kansas.
| |
Collapse
|