1
|
Hu B, Ouyang SQ, Zhu YP, Lu XL, Ning Z, Jiao BH, Wang LH, Yu HB, Liu XY. Brevetoxin Aptamer Selection and Biolayer Interferometry Biosensor Application. Toxins (Basel) 2024; 16:411. [PMID: 39453187 PMCID: PMC11510897 DOI: 10.3390/toxins16100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
Brevetoxins (PbTxs) are very potent marine neurotoxins that can cause an illness clinically described as neurologic shellfish poisoning (NSP). These toxins are cyclic polyether in chemistry and have increased their geographical distribution in the past 2 decades. However, the ethical problems as well as technical difficulties associated with currently employed analysis methods for marine toxins have spurred the quest for suitable alternatives to be applied in a regulatory monitoring regime. In this work, we reported the first instance of concurrent aptamer selection of Brevetoxin-1 (PbTx-1) and Brevetoxin-2 (PbTx-2) and constructed a biolayer interferometry (BLI) biosensor utilizing PbTx-1 aptamer as a specific recognition element. Through an in vitro selection process, we have, for the first time, successfully selected DNA aptamers with high affinity and specificity to PbTx-1 and PbTx-2 from a vast pool of random sequences. Among the selected aptamers, aptamer A5 exhibited the strongest binding affinity to PbTx-1, with an equilibrium dissociation constant (KD) of 2.56 μM. Subsequently, we optimized aptamer A5 by truncation to obtain the core sequence (A5-S3). Further refinement was achieved through mutations based on the predictions of a QGRS mapper, resulting in aptamer A5-S3G, which showed a significant increase in the KD value by approximately 100-fold. Utilizing aptamer A5-S3G, we fabricated a label-free, real-time optical BLI aptasensor for the detection of PbTx-1. This aptasensor displayed a broad detection range from 100 nM to 4000 nM PbTx-1, with a linear range between 100 nM and 2000 nM, and a limit of detection (LOD) as low as 4.5 nM. Importantly, the aptasensor showed no cross-reactivity to PbTx-2 or other marine toxins, indicating a high level of specificity for PbTx-1. Moreover, the aptasensor exhibited excellent reproducibility and stability when applied for the detection of PbTx-1 in spiked shellfish samples. We strongly believe that this innovative aptasensor offers a promising alternative to traditional immunological methods for the specific and reliable detection of PbTx-1.
Collapse
Affiliation(s)
- Bo Hu
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200433, China; (B.H.); (Z.N.)
| | - Sheng-Qun Ouyang
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (S.-Q.O.); (Y.-P.Z.); (X.-L.L.); (B.-H.J.); (L.-H.W.)
| | - Yu-Ping Zhu
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (S.-Q.O.); (Y.-P.Z.); (X.-L.L.); (B.-H.J.); (L.-H.W.)
| | - Xiao-Ling Lu
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (S.-Q.O.); (Y.-P.Z.); (X.-L.L.); (B.-H.J.); (L.-H.W.)
| | - Zhe Ning
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200433, China; (B.H.); (Z.N.)
| | - Bing-Hua Jiao
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (S.-Q.O.); (Y.-P.Z.); (X.-L.L.); (B.-H.J.); (L.-H.W.)
| | - Liang-Hua Wang
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (S.-Q.O.); (Y.-P.Z.); (X.-L.L.); (B.-H.J.); (L.-H.W.)
| | - Hao-Bing Yu
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200433, China; (B.H.); (Z.N.)
| | - Xiao-Yu Liu
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200433, China; (B.H.); (Z.N.)
| |
Collapse
|
2
|
Murray JF, Lavery AM, Schaeffer BA, Seegers BN, Pennington AF, Hilborn ED, Boerger S, Runkle JD, Loftin K, Graham J, Stumpf R, Koch A, Backer L. Assessing the relationship between cyanobacterial blooms and respiratory-related hospital visits: Green bay, Wisconsin 2017-2019. Int J Hyg Environ Health 2024; 255:114272. [PMID: 37871346 DOI: 10.1016/j.ijheh.2023.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Potential acute and chronic human health effects associated with exposure to cyanobacteria and cyanotoxins, including respiratory symptoms, are an understudied public health concern. We examined the relationship between estimated cyanobacteria biomass and the frequency of respiratory-related hospital visits for residents living near Green Bay, Lake Michigan, Wisconsin during 2017-2019. Remote sensing data from the Cyanobacteria Assessment Network was used to approximate cyanobacteria exposure through creation of a metric for cyanobacteria chlorophyll-a (ChlBS). We obtained counts of hospital visits for asthma, wheezing, and allergic rhinitis from the Wisconsin Hospital Association for ZIP codes within a 3-mile radius of Green Bay. We analyzed weekly counts of hospital visits versus cyanobacteria, which was modelled as a continuous measure (ChlBS) or categorized according to World Health Organization's (WHO) alert levels using Poisson generalized linear models. Our data included 2743 individual hospital visits and 114 weeks of satellite derived cyanobacteria biomass indicator data. Peak values of ChlBS were observed between the months of June and October. Using the WHO alert levels, 60% of weeks were categorized as no risk, 19% as Vigilance Level, 15% as Alert Level 1, and 6% as Alert Level 2. In Poisson regression models adjusted for temperature, dewpoint, season, and year, there was no association between ChlBS and hospital visits (rate ratio [RR] [95% Confidence Interval (CI)] = 0.98 [0.77, 1.24]). There was also no consistent association between WHO alert level and hospital visits when adjusting for covariates (Vigilance Level: RR [95% CI] 0.88 [0.74, 1.05], Alert Level 1: 0.82 [0.67, 0.99], Alert Level 2: 0.98 [0.77, 1.24], compared to the reference no risk category). Our methodology and model provide a template for future studies that assess the association between cyanobacterial blooms and respiratory health.
Collapse
Affiliation(s)
- Jordan F Murray
- University of Wisconsin-Madison School of Medicine and Public Health, 610 Walnut St, Madison, WI, 53726, United States; Wisconsin Department of Health Services, 1 West Wilson St, Madison, WI, 53703, United States.
| | - Amy M Lavery
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, United States
| | - Blake A Schaeffer
- Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, 27711, United States
| | - Bridget N Seegers
- GESTAR II, Morgan State University, Baltimore, MD, United States; Ocean Ecology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, United States
| | - Audrey F Pennington
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, United States
| | - Elizabeth D Hilborn
- Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, 27711, United States
| | - Savannah Boerger
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN, 37830, United States
| | - Jennifer D Runkle
- North Carolina Institute for Climate Studies, North Carolina State University, The Cooperative Institute for Satellite Earth Systems Studies, NOAA National Centers for Environmental Information, 151 Patton Ave, Asheville, NC, 28801i, United States; Geological Survey, 1217 Biltmore Dr, Lawrence, KS, 66049, United States
| | - Keith Loftin
- U. S. Geological Survey, 1217 Biltmore Drive, Lawrence, KS, 66049, United States
| | - Jennifer Graham
- U.S. Geological Survey, 425 Jordan Road, Troy, NY, 12180, United States
| | - Richard Stumpf
- National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, 1305 East-West Highway Code N/SCI1, Silver Spring, MD, 20910, United States
| | - Amanda Koch
- Wisconsin Department of Health Services, 1 West Wilson St, Madison, WI, 53703, United States
| | - Lorraine Backer
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, United States
| |
Collapse
|
3
|
Lim CC, Yoon J, Reynolds K, Gerald LB, Ault AP, Heo S, Bell ML. Harmful algal bloom aerosols and human health. EBioMedicine 2023; 93:104604. [PMID: 37164781 PMCID: PMC10363441 DOI: 10.1016/j.ebiom.2023.104604] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
Harmful algal blooms (HABs) are increasing across many locations globally. Toxins from HABs can be incorporated into aerosols and transported inland, where subsequent exposure and inhalation can induce adverse health effects. However, the relationship between HAB aerosols and health outcomes remains unclear despite the potential for population-level exposures. In this review, we synthesized the current state of knowledge and identified evidence gaps in the relationship between HAB aerosols and human health. Aerosols from Karenia brevis, Ostreopsis sp., and cyanobacteria were linked with respiratory outcomes. However, most works did not directly measure aerosol or toxin concentrations and instead relied on proxy metrics of exposure, such as cell concentrations in nearby waterbodies. Furthermore, the number of studies with epidemiological designs was limited. Significant uncertainties remain regarding the health effects of other HAB species; threshold dose and the dose-response relationship; effects of concurrent exposures to mixtures of toxins and other aerosol sources, such as microplastics and metals; the impact of long-term exposures; and disparities in exposures and associated health effects across potentially vulnerable subpopulations. Additional studies employing multifaceted exposure assessment methods and leveraging large health databases could address such gaps and improve our understanding of the public health burden of HABs.
Collapse
Affiliation(s)
- Chris C Lim
- Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona, USA.
| | - Jeonggyo Yoon
- Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona, USA
| | - Kelly Reynolds
- Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona, USA
| | - Lynn B Gerald
- Population Health Sciences Program, Office of the Vice Chancellor for Health Affairs, University of Illinois Chicago, Chicago, Illinois, USA
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Seulkee Heo
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Michelle L Bell
- School of the Environment, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Jobson J, Tsegay PS, Beltran MT, Taher EA, Rein SR, Liu Y, Rein KS. Brevetoxin induces a shift in the redox state of the proteome and unfolded protein response in human lymphoblast cells that can be alleviated with the acrolein scavenger MESNA. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104137. [PMID: 37127110 DOI: 10.1016/j.etap.2023.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/03/2023]
Abstract
Human lymphoblast cells were treated with the marine algal toxin, brevetoxin-2 (PbTx-2), and its effects on the proteome were assessed by redox proteomics using cysteine reactive tandem mass tags (TMT). Additionally, cells were simultaneously treated with PbTx-2 and the antioxidant and acrolein scavenger sodium 2-mercaptoethylsulfonate (MESNA) to determine if MESNA could prevent the proteomic effects of brevetoxin-2. A massive shift in the redox state of the proteome of brevetoxin-2 treated cells was observed. The main pathway affected was genetic information processing. Significantly oxidized proteins included Trx-1, peroxyredoxins (Prxs), ribosomal proteins, and the eukaryotic initiation factor 2 β subunit (eIF2β). Proteins that were overexpressed in brevetoxin-treated cells included four folding chaperones. These effects were diminished in the presence of MESNA indicating that MESNA may act through its antioxidant properties or as a brevetoxin scavenger. These studies provide novel insights into new prophylactics for brevetoxicosis in humans and wildlife.
Collapse
Affiliation(s)
- Jordan Jobson
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Pawlos S Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA
| | - Mayra Tabares Beltran
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Eman A Taher
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Samuel R Rein
- The School District of Philadelphia, Philadelphia, PA 19130, USA
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Kathleen S Rein
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Current address: The Water School, Department of Marine and Earth Science and Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL 33965.
| |
Collapse
|
5
|
Satake M, Irie R, Holland PT, Harwood DT, Shi F, Itoh Y, Hayashi F, Zhang H. Brevisulcenals-A1 and A2, Sulfate Esters of Brevisulcenals, Isolated from the Red Tide Dinoflagellate Karenia brevisulcata. Toxins (Basel) 2021; 13:toxins13020082. [PMID: 33499131 PMCID: PMC7911007 DOI: 10.3390/toxins13020082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/04/2022] Open
Abstract
Two different types of polycyclic ether toxins, namely brevisulcenals (KBTs) and brevisulcatic acids (BSXs), produced by the red tide dinoflagellate Karenia brevisulcata, were the cause of a toxic incident that occurred in New Zealand in 1998. Four major components, KBT-F, -G, -H, and -I, shown to be cytotoxic and lethal in mice, were isolated from cultured K. brevisulcata cells, and their structures were elucidated by spectroscopic analyses. New analogues, brevisulcenal-A1 (KBT-A1) and brevisulcenal-A2 (KBT-A2), toxins of higher polarity than that of known KBTs, were isolated from neutral lipophilic extracts of bulk dinoflagellate culture extracts. The structures of KBT-A1 and KBT-A2 were elucidated as sulfated analogues of KBT-F and KBT-G, respectively, by NMR and matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI TOF/TOF), and by comparison with the spectra of KBT-F and KBT-G. The cytotoxicities of the sulfate analogues were lower than those of KBT-F and KBT-G.
Collapse
Affiliation(s)
- Masayuki Satake
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
- Correspondence: ; Tel.: +81-3-5841-4357
| | - Raku Irie
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
- Graduate School of Nanobioscience, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Patrick T. Holland
- Cawthron Institute, Private Bag 2, Nelson 7010, New Zealand; (P.T.H.); (D.T.H.); (F.S.)
| | - D Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson 7010, New Zealand; (P.T.H.); (D.T.H.); (F.S.)
| | - Feng Shi
- Cawthron Institute, Private Bag 2, Nelson 7010, New Zealand; (P.T.H.); (D.T.H.); (F.S.)
| | - Yoshiyuki Itoh
- MS Business Unit, JEOL Ltd., Musashino, Akishima, Tokyo 196-8558, Japan;
| | - Fumiaki Hayashi
- NMR Science and Development Division, RIKEN SPring-8 Center, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (F.H.); (H.Z.)
| | - Huiping Zhang
- NMR Science and Development Division, RIKEN SPring-8 Center, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (F.H.); (H.Z.)
| |
Collapse
|
6
|
A Rare Case of Hypersensitivity Pneumonitis due to Florida Red Tide. Case Rep Pulmonol 2019; 2019:1934695. [PMID: 31380137 PMCID: PMC6662442 DOI: 10.1155/2019/1934695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/01/2019] [Indexed: 11/18/2022] Open
Abstract
Florida red tides occur annually due to proliferation of the marine dinoflagellate Karenia brevis, which produces neurotoxins known as brevotoxins. Inhalational exposure to brevotoxins usually results in upper airway symptoms only. Rarely does exposure lead to lower respiratory tract symptoms as in our case. We report a case of a 50-year-old man who presented with a 4-week history of dyspnea after exposure to the red tide. Computed tomography (CT) of the chest showed diffuse bilateral ground glass opacities and interstitial thickening. Bronchoalveolar lavage cultures and cytology were negative. The patient was started on steroids. Over the next few weeks, the patient's symptoms resolved. Repeat CT chest showed complete resolution of the ground glass opacities. Steroids were then tapered. Most patients who are exposed to algal blooms have self-limiting symptoms. Patients with asthma are particularly susceptible to worsening respiratory symptoms after exposure to brevotoxin aerosols. This case highlights that, in rare cases, exposure to red tide can results in severe lower respiratory tract symptoms.
Collapse
|
7
|
Diaz RE, Friedman MA, Jin D, Beet A, Kirkpatrick B, Reich A, Kirkpatrick G, Ullmann SG, Fleming LE, Hoagland P. Neurological illnesses associated with Florida red tide (Karenia brevis) blooms. HARMFUL ALGAE 2019; 82:73-81. [PMID: 30928012 PMCID: PMC9933543 DOI: 10.1016/j.hal.2018.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/07/2018] [Accepted: 07/07/2018] [Indexed: 05/12/2023]
Abstract
Human respiratory and gastrointestinal illnesses can result from exposures to brevetoxins originating from coastal Florida red tide blooms, comprising the marine alga Karenia brevis (K. brevis). Only limited research on the extent of human health risks and illness costs due to K. brevis blooms has been undertaken to date. Because brevetoxins are known neurotoxins that are able to cross the blood-brain barrier, it is possible that exposure to brevetoxins may be associated with neurological illnesses. This study explored whether K. brevis blooms may be associated with increases in the numbers of emergency department visits for neurological illness. An exposure-response framework was applied to test the effects of K. brevis blooms on human health, using secondary data from diverse sources. After controlling for resident population, seasonal and annual effects, significant increases in emergency department visits were found specifically for headache (ICD-9 784.0) as a primary diagnosis during proximate coastal K. brevis blooms. In particular, an increased risk for older residents (≥55 years) was identified in the coastal communities of six southwest Florida counties during K. brevis bloom events. The incidence of headache associated with K. brevis blooms showed a small but increasing association with K. brevis cell densities. Rough estimates of the costs of this illness were developed for hypothetical bloom occurrences.
Collapse
Affiliation(s)
- Roberto Efrain Diaz
- Department of Health Management and Policy, University of Miami, Coral Gables, FL, USA
| | | | - Di Jin
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Andrew Beet
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Barbara Kirkpatrick
- Department of Epidemiology and Public Health, Miller School of Medicine, University of Miami, Miami, FL, USA; Mote Marine Laboratory, Sarasota, FL, USA
| | - Andrew Reich
- Aquatic Toxins Program, Bureau of Epidemiology, Florida Department of Health, Tallahassee, FL, USA
| | | | - Steven G Ullmann
- Department of Health Management and Policy, University of Miami, Coral Gables, FL, USA.
| | - Lora E Fleming
- Department of Epidemiology and Public Health, Miller School of Medicine, University of Miami, Miami, FL, USA; European Centre for Environment and Human Health, University of Exeter Medical School, Truro, Cornwall, UK
| | - Porter Hoagland
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
8
|
Vilariño N, Louzao MC, Abal P, Cagide E, Carrera C, Vieytes MR, Botana LM. Human Poisoning from Marine Toxins: Unknowns for Optimal Consumer Protection. Toxins (Basel) 2018; 10:E324. [PMID: 30096904 PMCID: PMC6116008 DOI: 10.3390/toxins10080324] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/21/2023] Open
Abstract
Marine biotoxins are produced by aquatic microorganisms and accumulate in shellfish or finfish following the food web. These toxins usually reach human consumers by ingestion of contaminated seafood, although other exposure routes like inhalation or contact have also been reported and may cause serious illness. This review shows the current data regarding the symptoms of acute intoxication for several toxin classes, including paralytic toxins, amnesic toxins, ciguatoxins, brevetoxins, tetrodotoxins, diarrheic toxins, azaspiracids and palytoxins. The information available about chronic toxicity and relative potency of different analogs within a toxin class are also reported. The gaps of toxicological knowledge that should be studied to improve human health protection are discussed. In general, gathering of epidemiological data in humans, chronic toxicity studies and exploring relative potency by oral administration are critical to minimize human health risks related to these toxin classes in the near future.
Collapse
Affiliation(s)
- Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Paula Abal
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Eva Cagide
- Laboratorio CIFGA S.A., Plaza Santo Domingo 20-5°, 27001 Lugo, Spain.
| | - Cristina Carrera
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
- Hospital Veterinario Universitario Rof Codina, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
9
|
Dvorak AC, Solo-Gabriele HM, Galletti A, Benzecry B, Malone H, Boguszewski V, Bird J. Possible impacts of sea level rise on disease transmission and potential adaptation strategies, a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:951-968. [PMID: 29679917 DOI: 10.1016/j.jenvman.2018.03.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Sea levels are projected to rise in response to climate change, causing the intrusion of sea water into land. In flat coastal regions, this would generate an increase in shallow water covered areas with limited circulation. This scenario raises a concern about the consequences it could have on human health, specifically the possible impacts on disease transmission. In this review paper we identified three categories of diseases which are associated with water and whose transmission can be affected by sea level rise. These categories include: mosquitoborne diseases, naturalized organisms (Vibrio spp. and toxic algae), and fecal-oral diseases. For each disease category, we propose comprehensive adaptation strategies that would help minimize possible health risks. Finally, the City of Key West, Florida is analyzed as a case study, due to its inherent vulnerability to sea level rise. Current and projected adaptation techniques are discussed as well as the integration of additional recommendations, focused on disease transmission control. Given that sea level rise will likely continue into the future, the promotion and implementation of positive adaptation strategies is necessary to ensure community resilience.
Collapse
Affiliation(s)
- Ana C Dvorak
- Dept. of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | - Helena M Solo-Gabriele
- Dept. of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL, USA.
| | - Andrea Galletti
- Dept. of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | - Bernardo Benzecry
- Dept. of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | - Hannah Malone
- Dept. of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | | | | |
Collapse
|
10
|
Tian RY, Lin C, Yu SY, Gong S, Hu P, Li YS, Wu ZC, Gao Y, Zhou Y, Liu ZS, Ren HL, Lu SY. Preparation of a Specific ssDNA Aptamer for Brevetoxin-2 Using SELEX. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2016; 2016:9241860. [PMID: 28058132 PMCID: PMC5183765 DOI: 10.1155/2016/9241860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/20/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
The existing assays for detecting brevetoxin (BTX) depend on expensive equipment with a professional operator or on an antibody with limited stability, which requires complex processes, a high cost, and a considerable amount of time. The development of an alternative detection probe is another promising research direction. This paper reports the use of aptamers binding to BTX-2 in an analytical assay using the systematic evolution of ligands by exponential enrichment (SELEX). After 12 rounds of selection, the secondary structures of 25 sequences were predicted. Compared to other aptamers, Bap5 has relatively high affinity with the lowest dissociation constant of 4.83 μM, and IC50 is 73.81 ng mL-1. A good linear regression formula of y = 30.688x - 7.329 with a coefficient correlation of R2 = 0.9798 was obtained using a biotin-avidin ELISA. Moreover, there is no cross-reaction with the detected marine toxins, except for BTX-2. Thus, Bap5 has potential to detect BTX-2 in shellfish in the future as a substitute for the recognition probe.
Collapse
Affiliation(s)
- Rui-Yun Tian
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chao Lin
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Emergency Department, The Eastern Division, The First Hospital of Jilin University, Changchun 130062, China
| | - Shi-Yu Yu
- Fuqing Entry-Exit Inspection and Quarantine Bureau, Port District, Qingrong Road, Fuqing, Fujian 350300, China
| | - Sheng Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Pan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan-Song Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zong-Cheng Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yang Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zeng-Shan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hong-Lin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shi-Ying Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
11
|
Visciano P, Schirone M, Berti M, Milandri A, Tofalo R, Suzzi G. Marine Biotoxins: Occurrence, Toxicity, Regulatory Limits and Reference Methods. Front Microbiol 2016; 7:1051. [PMID: 27458445 PMCID: PMC4933704 DOI: 10.3389/fmicb.2016.01051] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/23/2016] [Indexed: 01/08/2023] Open
Abstract
Harmful algal blooms are natural phenomena caused by the massive growth of phytoplankton that may contain highly toxic chemicals, the so-called marine biotoxins causing illness and even death to both aquatic organisms and humans. Their occurrence has been increased in frequency and severity, suggesting a worldwide public health risk. Marine biotoxins can accumulate in bivalve molluscs and regulatory limits have been set for some classes according to European Union legislation. These compounds can be distinguished in water- and fat-soluble molecules. The first group involves those of Paralytic Shellfish Poisoning and Amnesic Shellfish Poisoning, whereas the toxins soluble in fat can cause Diarrheic Shellfish Poisoning and Neurotoxic Shellfish Poisoning. Due to the lack of long-term toxicity studies, establishing tolerable daily intakes for any of these marine biotoxins was not possible, but an acute reference dose can be considered more appropriate, because these molecules show an acute toxicity. Dietary exposure assessment is linked both to the levels of marine biotoxins present in bivalve molluscs and the portion that could be eaten by consumers. Symptoms may vary from a severe gastrointestinal intoxication with diarrhea, nausea, vomiting, and abdominal cramps to neurological disorders such as ataxia, dizziness, partial paralysis, and respiratory distress. The official method for the detection of marine biotoxins is the mouse bioassay (MBA) showing some limits due to ethical restrictions and insufficient specificity. For this reason, the liquid chromatography-mass spectrometry method has replaced MBA as the reference technique. However, the monitoring of algal blooms producing marine biotoxins should be regularly assessed in order to obtain more reliable, accurate estimates of bloom toxicity and their potential impacts.
Collapse
Affiliation(s)
- Pierina Visciano
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo Teramo, Italy
| | - Maria Schirone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo Teramo, Italy
| | - Miriam Berti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale" Teramo, Italy
| | - Anna Milandri
- National Reference Laboratory for Marine Biotoxins, Fondazione Centro Ricerche Marine Cesenatico, Italy
| | - Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo Teramo, Italy
| | - Giovanna Suzzi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo Teramo, Italy
| |
Collapse
|
12
|
Berdalet E, Fleming LE, Gowen R, Davidson K, Hess P, Backer LC, Moore SK, Hoagland P, Enevoldsen H. Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century. JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM. MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM 2015; 2015:10.1017/S0025315415001733. [PMID: 26692586 PMCID: PMC4676275 DOI: 10.1017/s0025315415001733] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Microalgal blooms are a natural part of the seasonal cycle of photosynthetic organisms in marine ecosystems. They are key components of the structure and dynamics of the oceans and thus sustain the benefits that humans obtain from these aquatic environments. However, some microalgal blooms can cause harm to humans and other organisms. These harmful algal blooms (HABs) have direct impacts on human health and negative influences on human wellbeing, mainly through their consequences to coastal ecosystem services (fisheries, tourism and recreation) and other marine organisms and environments. HABs are natural phenomena, but these events can be favoured by anthropogenic pressures in coastal areas. Global warming and associated changes in the oceans could affect HAB occurrences and toxicity as well, although forecasting the possible trends is still speculative and requires intensive multidisciplinary research. At the beginning of the 21st century, with expanding human populations, particularly in coastal and developing countries, mitigating HABs impacts on human health and wellbeing is becoming a more pressing public health need. The available tools to address this global challenge include maintaining intensive, multidisciplinary and collaborative scientific research, and strengthening the coordination with stakeholders, policymakers and the general public. Here we provide an overview of different aspects of the HABs phenomena, an important element of the intrinsic links between oceans and human health and wellbeing.
Collapse
Affiliation(s)
- Elisa Berdalet
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Lora E Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, Truro, Cornwall TR1 3HD, UK
| | - Richard Gowen
- Fisheries and Aquatic Ecosystems Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX, UK ; Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA, UK
| | - Keith Davidson
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA, UK
| | - Philipp Hess
- Ifremer, Laboratoire Phycotoxines, BP21105, Rue de l'lle d'Yeu, 44311 Nantes Cedex 03, France
| | - Lorraine C Backer
- National Center for Environmental Health, 4770 Buford Highway NE, MS F-60, Chamblee, GA 30341
| | - Stephanie K Moore
- University Corporation for Atmospheric Research, Joint Office for Science Support. Visiting Scientist at Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - Porter Hoagland
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Henrik Enevoldsen
- Intergovernmental Oceanographic Commission of UNESCO, IOC Science and Communication Centre on Harmful Algae, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
13
|
Davidson K, Gowen RJ, Harrison PJ, Fleming LE, Hoagland P, Moschonas G. Anthropogenic nutrients and harmful algae in coastal waters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 146:206-216. [PMID: 25173729 DOI: 10.1016/j.jenvman.2014.07.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
Harmful algal blooms (HABs) are thought to be increasing in coastal waters worldwide. Anthropogenic nutrient enrichment has been proposed as a principal causative factor of this increase through elevated inorganic and/or organic nutrient concentrations and modified nutrient ratios. We assess: 1) the level of understanding of the link between the amount, form and ratio of anthropogenic nutrients and HABs; 2) the evidence for a link between anthropogenically generated HABs and negative impacts on human health; and 3) the economic implications of anthropogenic nutrient/HAB interactions. We demonstrate that an anthropogenic nutrient-HAB link is far from universal, and where it has been demonstrated, it is most frequently associated with high biomass rather than low biomass (biotoxin producing) HABs. While organic nutrients have been shown to support the growth of a range of HAB species, insufficient evidence exists to clearly establish if these nutrients specifically promote the growth of harmful species in preference to benign ones, or if/how they influence toxicity of harmful species. We conclude that the role of anthropogenic nutrients in promoting HABs is site-specific, with hydrodynamic processes often determining whether blooms occur. We also find a lack of evidence of widespread significant adverse health impacts from anthropogenic nutrient-generated HABs, although this may be partly due to a lack of human/animal health and HAB monitoring. Detailed economic evaluation and cost/benefit analysis of the impact of anthropogenically generated HABs, or nutrient reduction schemes to alleviate them, is also frequently lacking.
Collapse
Affiliation(s)
- Keith Davidson
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll PA37 1QA, UK.
| | - Richard J Gowen
- Fisheries and Aquatic Ecosystems Branch, Agriculture Food and Environmental Science Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX, UK
| | - Paul J Harrison
- Department of Earth & Ocean Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lora E Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, RCHT Knowledge Spa, Truro, Cornwall TR1 3HD, UK; Oceans and Human Health Center, University of Miami, Miami, FL 33149, USA
| | - Porter Hoagland
- Marine Policy Center, MS#41, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Grigorios Moschonas
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll PA37 1QA, UK
| |
Collapse
|