1
|
Wang C. Regulating phytoplankton-available suspended particulate phosphorus (P) to control internal P pollution in lake: Conclusion from a short review. CHEMOSPHERE 2023; 331:138833. [PMID: 37137394 DOI: 10.1016/j.chemosphere.2023.138833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/05/2023]
Abstract
The necessity on controlling internal P pollution has been widely reported for lake restoration; thus far, cutting the migrations of soluble P from sediment to overlying water, especially under anoxic condition, is the main target of the internal P pollution control to achieve favorable ecological responses in lake. Here, according to the types of P directly available by phytoplankton, phytoplankton-available suspended particulate P (SPP) pollution, which mainly occurs under aerobic condition and due to sediment resuspension and soluble P adsorption by suspended particle, is found to be the other kind of internal P pollution. The SPP has long been a key index for environmental quality assessment, which could be indirectly reflected by the developed various methods for phytoplankton-available P pool analysis; also, the P has been demonstrated to be a major cause of phytoplankton breeding, typically in shallow lakes. Importantly, compared to the soluble P, SPP pollution clearly has more complicated loading pathways and P activation mechanisms and involves in different fractions of P, even part of which are with relatively high stability in sediment and suspended particle, leading to the potential control measures for the pollution being more complex. Considering the potential differences of internal P pollution among various lakes, this study is therefore calling for more research to focus on regulating phytoplankton-available SPP pollution. Recommendations are also offered to bridge knowledge gap of the regulation to design proper measures for lake restoration.
Collapse
Affiliation(s)
- Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
2
|
Santoro M, Hassenrück C, Labrenz M, Hagemann M. Acclimation of Nodularia spumigena CCY9414 to inorganic phosphate limitation - Identification of the P-limitation stimulon via RNA-seq. Front Microbiol 2023; 13:1082763. [PMID: 36687591 PMCID: PMC9846622 DOI: 10.3389/fmicb.2022.1082763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Nodularia spumigena is a toxic, filamentous cyanobacterium capable of fixing atmospheric N2, which is often dominating cyanobacterial bloom events in the Baltic Sea and other brackish water systems worldwide. Increasing phosphate limitation has been considered as one environmental factor promoting cyanobacterial mass developments. In the present study, we analyzed the response of N. spumigena strain CCY9414 toward strong phosphate limitation. Growth of the strain was diminished under P-deplete conditions; however, filaments contained more polyphosphate under P-deplete compared to P-replete conditions. Using RNA-seq, gene expression was compared in N. spumigena CCY9414 after 7 and 14 days in P-deplete and P-replete conditions, respectively. After 7 days, 112 genes were significantly up-regulated in P-deplete filaments, among them was a high proportion of genes encoding proteins related to P-homeostasis such as transport systems for different P species. Many of these genes became also up-regulated after 14 days compared to 7 days in filaments grown under P-replete conditions, which was consistent with the almost complete consumption of dissolved P in these cultures after 14 days. In addition to genes directly related to P starvation, genes encoding proteins for bioactive compound synthesis, gas vesicles formation, or sugar catabolism were stimulated under P-deplete conditions. Collectively, our data describe an experimentally validated P-stimulon in N. spumigena CCY9414 and provide the indication that severe P limitation could indeed support bloom formation by this filamentous strain.
Collapse
Affiliation(s)
- Mariano Santoro
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde (IOW), Rostock, Germany,Department of Plant Physiology, Institute for Biosciences, University of Rostock, Rostock, Germany
| | - Christiane Hassenrück
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde (IOW), Rostock, Germany
| | - Matthias Labrenz
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde (IOW), Rostock, Germany
| | - Martin Hagemann
- Department of Plant Physiology, Institute for Biosciences, University of Rostock, Rostock, Germany,*Correspondence: Martin Hagemann,
| |
Collapse
|
3
|
Xiao M, Burford MA, Wood SA, Aubriot L, Ibelings BW, Prentice MJ, Galvanese EF, Harris TD, Hamilton DP. Schindler's legacy: from eutrophic lakes to the phosphorus utilization strategies of cyanobacteria. FEMS Microbiol Rev 2022; 46:fuac029. [PMID: 35749580 PMCID: PMC9629505 DOI: 10.1093/femsre/fuac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
David Schindler and his colleagues pioneered studies in the 1970s on the role of phosphorus in stimulating cyanobacterial blooms in North American lakes. Our understanding of the nuances of phosphorus utilization by cyanobacteria has evolved since that time. We review the phosphorus utilization strategies used by cyanobacteria, such as use of organic forms, alternation between passive and active uptake, and luxury storage. While many aspects of physiological responses to phosphorus of cyanobacteria have been measured, our understanding of the critical processes that drive species diversity, adaptation and competition remains limited. We identify persistent critical knowledge gaps, particularly on the adaptation of cyanobacteria to low nutrient concentrations. We propose that traditional discipline-specific studies be adapted and expanded to encompass innovative new methodologies and take advantage of interdisciplinary opportunities among physiologists, molecular biologists, and modellers, to advance our understanding and prediction of toxic cyanobacteria, and ultimately to mitigate the occurrence of blooms.
Collapse
Affiliation(s)
- Man Xiao
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, 210008, China
| | - Michele A Burford
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, 7010, New Zealand
| | - Luis Aubriot
- Phytoplankton Physiology and Ecology Group, Sección Limnología, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias; Universidad de la República, Montevideo, 11400, Uruguay
| | - Bas W Ibelings
- Department F.-A. Forel for Aquatic and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Geneva, 1290, Switzerland
| | - Matthew J Prentice
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Elena F Galvanese
- Laboratório de Análise e Síntese em Biodiversidade, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba-PR, 81531-998, Brazil
- Programa de Pós-graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba-PR, 80060-140, Brazil
| | - Ted D Harris
- Kansas Biological Survey and Center for Ecological Research, Lawrence, KS, 66047, United States
| | - David P Hamilton
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
4
|
Tee HS, Waite D, Payne L, Middleditch M, Wood S, Handley KM. Tools for successful proliferation: diverse strategies of nutrient acquisition by a benthic cyanobacterium. THE ISME JOURNAL 2020; 14:2164-2178. [PMID: 32424245 PMCID: PMC7367855 DOI: 10.1038/s41396-020-0676-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 12/28/2022]
Abstract
Freshwater cyanobacterial blooms have increased worldwide, channeling organic carbon into these systems, and threatening animal health through the production of cyanotoxins. Both toxic and nontoxic Microcoleus proliferations usually occur when there are moderate concentrations of dissolved inorganic nitrogen, but when phosphorus is scarce. In order to understand how Microcoleus establishes thick biofilms (or mats) on riverbeds under phosphorus-limiting conditions, we collected Microcoleus-dominated biofilms over a 19-day proliferation event for proteogenomics. A single pair of nitrogen-dependent Microcoleus species were consistently present in relatively high abundance, although each followed a unique metabolic trajectory. Neither possessed anatoxin gene clusters, and only very low concentrations of anatoxins (~2 µg kg-1) were detected, likely originating from rarer Microcoleus species also present. Proteome allocations were dominated by photosynthesizing cyanobacteria and diatoms, and data indicate biomass was actively recycled by Bacteroidetes and Myxococcales. Microcoleus likely acquired nutrients throughout the proliferation event by uptake of nitrate, urea, and inorganic and organic phosphorus. Both species also harbored genes that could be used for inorganic phosphate solubilization with pyrroloquinoline quinone cofactors produced by cohabiting Proteobacteria. Results indicate that Microcoleus are equipped with diverse mechanisms for nitrogen and phosphorus acquisition, enabling them to proliferate and out-compete others in low-phosphorus waters.
Collapse
Affiliation(s)
- H S Tee
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - D Waite
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - L Payne
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - M Middleditch
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - S Wood
- Cawthron Institute, Nelson, New Zealand
| | - K M Handley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|