1
|
Meng R, Du X, Ge K, Wu C, Zhang Z, Liang X, Yang J, Zhang H. Does climate change increase the risk of marine toxins? Insights from changing seawater conditions. Arch Toxicol 2024; 98:2743-2762. [PMID: 38795135 DOI: 10.1007/s00204-024-03784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
Marine toxins produced by marine organisms threaten human health and impose a heavy public health burden on coastal countries. Lately, there has been an emergence of marine toxins in regions that were previously unaffected, and it is believed that climate change may be a significant factor. This paper systematically summarizes the impact of climate change on the risk of marine toxins in terms of changes in seawater conditions. From our findings, climate change can cause ocean warming, acidification, stratification, and sea-level rise. These climatic events can alter the surface temperature, salinity, pH, and nutrient conditions of seawater, which may promote the growth of various algae and bacteria, facilitating the production of marine toxins. On the other hand, climate change may expand the living ranges of marine organisms (such as algae, bacteria, and fish), thereby exacerbating the production and spread of marine toxins. In addition, the sources, distribution, and toxicity of ciguatoxin, tetrodotoxin, cyclic imines, and microcystin were described to improve public awareness of these emerging marine toxins. Looking ahead, developing interdisciplinary cooperation, strengthening monitoring of emerging marine toxins, and exploring more novel approaches are essential to better address the risks of marine toxins posed by climate change. Altogether, the interrelationships between climate, marine ecology, and marine toxins were analyzed in this study, providing a theoretical basis for preventing and managing future health risks from marine toxins.
Collapse
Affiliation(s)
- Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Agarwal V, Sonnet V, Inomura K, Ciochetto AB, Mouw CB. Image-derived indicators of phytoplankton community responses to Pseudo-nitzschia blooms. HARMFUL ALGAE 2024; 138:102702. [PMID: 39244237 DOI: 10.1016/j.hal.2024.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
Phytoplankton populations in the natural environment interact with each other. Despite rising global concern with Pseudo-nitzschia blooms, which can produce the potent neurotoxin domoic acid, we still do not fully understand how other phytoplankton genera respond to the presence of Pseudo-nitzschia. Here, we used a 4-year high-resolution imaging dataset for 9 commonly found phytoplankton genera in Narragansett Bay, alongside environmental data, to identify potential interactions between phytoplankton genera and their response to elevated Pseudo-nitzschia abundance. Our results indicate that Pseudo-nitzschia tends to bloom either concurrently with or right after other phytoplankton genera. Such bloom periods coincide with higher water temperatures and lower salinity. Pseudo-nitzschia image abundance tends to increase the most from March-May and peaks during May-Jun, whereas the image-derived biovolume and width of Pseudo-nitzschia chains increase the most during Jan-Feb. For most phytoplankton genera, their relationship with Pseudo-nitzschia abundance is noticeably different from their relationship with Pseudo-nitzschia image features. Despite the complexity in the phytoplankton community, our analysis suggests several ecological indicators that may be used to determine the risk of harmful algal blooms.
Collapse
Affiliation(s)
- Vitul Agarwal
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA.
| | - Virginie Sonnet
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA; Laboratoire d'Océanographie de Villefanche, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA
| | - Audrey B Ciochetto
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA
| | - Colleen B Mouw
- Graduate School of Oceanography, University of Rhode Island, Narragansett, USA.
| |
Collapse
|
3
|
Brunson JK, Thukral M, Ryan JP, Anderson CR, Kolody BC, James C, Chavez FP, Leaw CP, Rabines AJ, Venepally P, Zheng H, Kudela RM, Smith GJ, Moore BS, Allen AE. Molecular Forecasting of Domoic Acid during a Pervasive Toxic Diatom Bloom. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565333. [PMID: 37961417 PMCID: PMC10635071 DOI: 10.1101/2023.11.02.565333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In 2015, the largest recorded harmful algal bloom (HAB) occurred in the Northeast Pacific, causing nearly 100 million dollars in damages to fisheries and killing many protected marine mammals. Dominated by the toxic diatom Pseudo-nitzschia australis , this bloom produced high levels of the neurotoxin domoic acid (DA). Through molecular and transcriptional characterization of 52 near-weekly phytoplankton net-tow samples collected at a bloom hotspot in Monterey Bay, California, we identified active transcription of known DA biosynthesis ( dab ) genes from the three identified toxigenic species, including P. australis as the primary origin of toxicity. Elevated expression of silicon transporters ( sit1 ) during the bloom supports the previously hypothesized role of dissolved silica (Si) exhaustion in contributing to bloom physiology and toxicity. We find that co-expression of the dabA and sit1 genes serves as a robust predictor of DA one week in advance, potentially enabling the forecasting of DA-producing HABs. We additionally present evidence that low levels of iron could have co-limited the diatom population along with low Si. Iron limitation represents a previously unrecognized driver of both toxin production and ecological success of the low iron adapted Pseudo-nitzschia genus during the 2015 bloom, and increasing pervasiveness of iron limitation may fuel the escalating magnitude and frequency of toxic Pseudo-nitzschia blooms globally. Our results advance understanding of bloom physiology underlying toxin production, bloom prediction, and the impact of global change on toxic blooms. Significance Pseudo-nitzschia diatoms form oceanic harmful algal blooms that threaten human health through production of the neurotoxin domoic acid (DA). DA biosynthetic gene expression is hypothesized to control DA production in the environment, yet what regulates expression of these genes is yet to be discovered. In this study, we uncovered expression of DA biosynthesis genes by multiple toxigenic Pseudo-nitzschia species during an economically impactful bloom along the North American West Coast, and identified genes that predict DA in advance of its production. We discovered that iron and silica co-limitation restrained the bloom and likely promoted toxin production. This work suggests that increasing iron limitation due to global change may play a previously unrecognized role in driving bloom frequency and toxicity.
Collapse
|
4
|
Anderson M, Valera M, Schnetzer A. Co-occurrence of freshwater and marine phycotoxins: A record of microcystins and domoic acid in Bogue Sound, North Carolina (2015 to 2020). HARMFUL ALGAE 2023; 125:102412. [PMID: 37220972 DOI: 10.1016/j.hal.2023.102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 05/25/2023]
Abstract
Harmful algal blooms (HABs) create issues both environmentally and economically in coastal regions, especially if algal growth is linked to the production of toxins which can affect ecosystems, wildlife, and humans. This study is the first to confirm near year-round presence and co-occurrence of microcystins (MCs) and domoic acid (DA) within the outskirts of the largest lagoonal US estuary, the Pamlico-Albemarle Sound System (PASS). Monthly sampling at a time-series location in Bogue Sound, located within the eastern part of the PASS, showed DA and MCs were commonly present and detected together 50% of the time based on an in situ toxin tracking approach over a 6-year time period (2015-2020). Particulate toxin concentrations based on monthly grab sampling remained well below regulatory thresholds for MCs and below DA concentrations associated with animal sickness and mortality elsewhere. Time-integrated levels for dissolved MCs and DA, however, indicated a continuous presence of both toxins within Bogue Sound where high flushing rates (∼2-day average residence time) presumably alleviate potential issues linked to nutrient inputs, subsequent algal growth, or toxin accumulation. Pseudo-nitzschia spp. contributed 0 to 19% to the resident microplankton community. Light microscopy analyses did not reveal the source of MCs production in the sound but suggested potential downstream transport and/or autochthonous production due to taxa not accounted for in this study (e.g., picocyanobacteria). Nitrate+nitrite (NOx) concentrations, wind speed, and water temperature explained a third of the variations in accumulated dissolved MCs, but no relationship was seen for DA concentrations based on monthly sampling within this highly dynamic system. This study emphasizes the importance of continued algal toxin monitoring in systems like Bogue Sound which might experience decreases in water quality similar to adjacent, nutrient-impaired regions within the PASS.
Collapse
Affiliation(s)
- Madeline Anderson
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States
| | - Marco Valera
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States
| | - Astrid Schnetzer
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
5
|
Xu D, Zheng G, Brennan G, Wang Z, Jiang T, Sun K, Fan X, Bowler C, Zhang X, Zhang Y, Wang W, Wang Y, Li Y, Wu H, Li Y, Fu FX, Hutchins DA, Tan Z, Ye N. Plastic responses lead to increased neurotoxin production in the diatom Pseudo-nitzschia under ocean warming and acidification. THE ISME JOURNAL 2023; 17:525-536. [PMID: 36658395 PMCID: PMC10030627 DOI: 10.1038/s41396-023-01370-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Ocean warming (OW) and acidification (OA) are recognized as two major climatic conditions influencing phytoplankton growth and nutritional or toxin content. However, there is limited knowledge on the responses of harmful algal bloom species that produce toxins. Here, the study provides quantitative and mechanistic understanding of the acclimation and adaptation responses of the domoic acid (DA) producing diatom Pseudo-nitzschia multiseries to rising temperature and pCO2 using both a one-year in situ bulk culture experiment, and an 800-day laboratory acclimation experiment. Ocean warming showed larger selective effects on growth and DA metabolism than ocean acidification. In a bulk culture experiment, increasing temperature +4 °C above ambient seawater temperature significantly increased DA concentration by up to 11-fold. In laboratory when the long-term warming acclimated samples were assayed under low temperatures, changes in growth rates and DA concentrations indicated that P. multiseries did not adapt to elevated temperature, but could instead rapidly and reversibly acclimate to temperature shifts. However, the warming-acclimated lines showed evidence of adaptation to elevated temperatures in the transcriptome data. Here the core gene expression was not reversed when warming-acclimated lines were moved back to the low temperature environment, which suggested that P. multiseries cells might adapt to rising temperature over longer timescales. The distinct strategies of phenotypic plasticity to rising temperature and pCO2 demonstrate a strong acclimation capacity for this bloom-forming toxic diatom in the future ocean.
Collapse
Affiliation(s)
- Dong Xu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guanchao Zheng
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | | | - Zhuonan Wang
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
| | - Tao Jiang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ke Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiao Fan
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Xiaowen Zhang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yan Zhang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Wei Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yitao Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yan Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Haiyan Wu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Youxun Li
- Marine Science Research Institute of Shandong Province (National Oceanographic Center), Qingdao, China
| | - Fei-Xue Fu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - David A Hutchins
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Zhijun Tan
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| | - Naihao Ye
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
6
|
Sharma D, Biswas H, Bandyopadhyay D. Simulated ocean acidification altered community composition and growth of a coastal phytoplankton assemblage (South West coast of India, eastern Arabian Sea). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19244-19261. [PMID: 34714479 DOI: 10.1007/s11356-021-17141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Marine phytoplankton can be highly sensitive to ocean acidification; however, their responses are diverse and therefore, phytoplankton response study on the regional scale is of high research priority. The present study documented the community shift and growth responses of a natural phytoplankton assemblage from the South West coastal water of India (South Eastern Arabian Sea) under ambient CO2 (A-CO2 ≈ 400 µatm) and high CO2 (H-CO2 ≈ 830 µatm) levels in microcosms during the winter monsoon. A doubling of pCO2 resulted in increased cell density, particulate organic carbon and nitrogen (POC, PON) contents, and C:N ratios. The depleted values of δ13CPOC in the H-CO2-incubated cells indicated a higher diffusive CO2 influx. HPLC marker pigment analysis revealed that the community was microphytoplankton dominated (mostly diatoms); nanoplanktonic prymnesiophytic algae and picoplanktonic cyanobacteria showed insignificant response to the simulated ocean acidification. A high CO2-induced increased growth rate was noticed in 6 diatoms (Leptocylindrus danicus; Rhizosolenia setigera; Navicula sp., Asterionella glacialis, Dactyliosolen fragilissimus, and Thalassiosira sp.). The cell volumes of Thalassionema frauenfeldii, Asterionella glacialis, and Cylindrotheca closterium increased significantly, whereas Rhizosolenia setigera and Thalassiosira sp. showed decreased cell volume at the elevated CO2 levels. These changes in growth rate, cell volume, and elemental stoichiometry could be related to CO2 acquisition and the nutritional status of the cells. Some phytoplankton genera from this region are probably acclimatized to pCO2 fluctuations and are likely to benefit from the future increase in CO2 levels. Higher POC production and increased C:N ratio along with variable cell volume may impact the trophic transfer and cycling of organic carbon in this coastal water. However, a multi-stressor approach in a longer experimental exposure should be considered in future research.
Collapse
Affiliation(s)
- Diksha Sharma
- Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Haimanti Biswas
- Biological Oceanography Division, CSIR National Institute of Oceanography, Dona Paula, Goa, 403 004, India.
| | | |
Collapse
|
7
|
Liu Q, Wang Y, Li Y, Li Y, Wang Y, Zhou B, Zhou Z. Nutrient Alteration Drives the Impacts of Seawater Acidification on the Bloom-Forming Dinoflagellate Karenia mikimotoi. FRONTIERS IN PLANT SCIENCE 2021; 12:739159. [PMID: 34751224 PMCID: PMC8572056 DOI: 10.3389/fpls.2021.739159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Seawater acidification and nutrient alteration are two dominant environmental factors in coastal environments that influence the dynamics and succession of marine microalgae. However, the impacts of their combination have seldom been recorded. A simulated experimental system was set up to mimic the effects of elevated acidification on a bloom-forming dinoflagellate, Karenia mikimotoi, exposed to different nutrient conditions, and the possible mechanism was discussed. The results showed that acidification at different pH levels of 7.6 or 7.4 significantly influenced microalgal growth (p<0.05) compared with the control at pH 8.0. Mitochondria, the key sites of aerobic respiration and energy production, were impaired in a pH-dependent manner, and a simultaneous alteration of reactive oxygen species (ROS) production occurred. Cytochrome c oxidase (COX) and citrate synthase (CS), two mitochondrial metabolism-related enzymes, were actively induced with acidification exposure, suggesting the involvement of the mitochondrial pathway in coping with acidification. Moreover, different nutrient statuses indicated by various N:P ratios of 7:1 (N limitation) and 52:1 (P limitation) dramatically altered the impacts of acidification compared with those exposed to an N:P ratio of 17:1 (control), microalgal growth at pH 7.4 was obviously accelerated with the elevation of the nutrient ratio compared to that at pH 8.1 (p<0.05), and nutrient limitations seemed beneficial for growth in acidifying conditions. The production of alkaline phosphatase (AP) and acid phosphatase (AcP), an effective index indicating the microalgal growth status, significantly increased at the same time (p<0.05), which further supported this speculation. However, nitrate reductase (NR) was slightly inhibited. Hemolytic toxin production showed an obvious increase as the N:P ratio increased when exposed to acidification. Taken together, mitochondrial metabolism was suspected to be involved in the process of coping with acidification, and nutrient alterations, especially P limitation, could effectively alleviate the negative impacts induced by acidification. The obtained results might be a possible explanation for the competitive fitness of K. mikimotoi during bloom development.
Collapse
Affiliation(s)
- Qian Liu
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yanqun Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuanyuan Li
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Yijun Li
- College of Life Sciences, Qingdao University, Qingdao, China
| | - You Wang
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bin Zhou
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhongyuan Zhou
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Wingert CJ, Cochlan WP. Effects of ocean acidification on the growth, photosynthetic performance, and domoic acid production of the diatom Pseudo-nitzschia australis from the California Current System. HARMFUL ALGAE 2021; 107:102030. [PMID: 34456015 DOI: 10.1016/j.hal.2021.102030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 06/13/2023]
Abstract
Pseudo-nitzschia australis (Frenguelli), a toxigenic pennate diatom capable of producing the neurotoxin domoic acid (DA), was examined in unialgal laboratory cultures to quantify its physiological response to ocean acidification (OA) - the decline in pH resulting from increasing partial pressure of CO2 (pCO2) in the oceans. Toxic blooms of P. australis are common in the coastal waters of eastern boundary upwelling systems (EBUS), including those of the California Current System (CCS) off the west coast of the United States where increased pCO2 and decreased seawater pH are well-known. This study determined the production of dissolved (dDA) and particulate DA (pDA), the rates of growth and nutrient (nitrate, silicate and phosphate) utilization, cellular elemental ratios of carbon and nitrogen, and the photosynthetic response to declining pH during the exponential and stationary growth phases of a strain of P. australis isolated during a massive toxic bloom that persisted for months along much of the U.S. west coast during 2015. Our controlled lab studies showed that DA production significantly increased as pCO2 increased, and total DA (pDA + dDA) normalized to cell density was 2.7 fold greater at pH 7.8 compared to pH 8.1 (control) during nutrient-limited stationary growth. However, exponential growth rates did not increase with declining pH, but remained constant until pH of 7.8 was reached, and then specific growth rates declined by ca. 30%. The toxin results demonstrate that despite minimal effects of OA observed during the nutrient-replete exponential growth phase, the enhancement of DA production, notably the 3-fold increase in particulate DA per cell, with declining pH from 8.1 to 7.8 during the nutrient-depleted stationary phase, supports the hypothesis that increasing pCO2 will result in greater toxic risk to coastal ecosystems from elevated ambient concentrations of particulate DA. The ecological consequences of decreasing silicate uptake rates and increasing cellular carbon quotas with declining pH may potentially ameliorate some negative impacts of OA on Pseudo-nitzschia growth in natural systems.
Collapse
Affiliation(s)
- Charles J Wingert
- Estuary and Ocean Science Center, San Francisco State University, 3150 Paradise Drive, Tiburon, California, 94920-1205, USA; Algal Resources Collection, MARBIONC, Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC, 28403-5928, USA
| | - William P Cochlan
- Estuary and Ocean Science Center, San Francisco State University, 3150 Paradise Drive, Tiburon, California, 94920-1205, USA.
| |
Collapse
|
9
|
Nour A, Nina L, Frederik G, Fabienne H, Zouher A, Amandine C. Impacts of ocean acidification on growth and toxin content of the marine diatoms Pseudo-nitzschia australis and P. fraudulenta. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105380. [PMID: 34146891 DOI: 10.1016/j.marenvres.2021.105380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
This paper present the effects of ocean acidification on growth and domoic acid (DA) content of several strains of the toxic Pseudo-nitzschia australis and the non-toxic P. fraudulenta. Three strains of each species (plus two subclones of P. australis) were acclimated and grown in semi-continuous cultures at three pH levels: 8.07, 7.77, and 7.40, in order to simulate changes of seawater pH from present to plausible future levels. Our results showed that lowering pH from current level (8.07) to predicted pH level in 2100 (7.77) did not affect the mean growth rates of some of the P. australis strains (FR-PAU-17 and L3-100), but affected other strains either negatively (L3-30) or positively (L3.4). However, the growth rates significantly decreased with pH lowered to 7.40 (by 13% for L3-100, 43% for L3-30 and 16% for IFR-PAU-17 compared to the rates at pH 8.07). In contrast, growth rates of the non-toxic P. fraudulenta strains were not affected by pH changing from 8.07 to 7.40. The P. australis strains produced DA at all pH levels tested, and the highest particulate DA concentration normalized to cell abundance (pDA) was found at pH 8.07. Total DA content (pDA and dissolved DA) was significantly higher at current pH (8.07) compared to pH (7.77), exept for one strain (L 3.4) where no difference was found. At lower pH levels 7.77-7.40, total DA content was similar, except for strains IFR-PAU-17 and L3-100 which had the lowest content at the pH 7.77. The diversity in the responses in growth and DA content highlights the inter- and intra-specific variation in Pseudo-nitzschia species in response to ocean acidification. When exploring environmental responses of Pseudo-nitzschia using cultured cells, not only strain-specific variation but also culturing history should be taken into consideration, as the light levels under which the subclones were cultured, afterwards affected both maximum growth rates and DA content.
Collapse
Affiliation(s)
- Ayache Nour
- Institut Francaise de Recherche pour L'Exploitation de La Mer: Ifremer, Phycotoxin Laboratory, F-44311, Nantes, France.
| | - Lundholm Nina
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1307, Copenhagen, Denmark
| | - Gai Frederik
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1307, Copenhagen, Denmark
| | - Hervé Fabienne
- Institut Francaise de Recherche pour L'Exploitation de La Mer: Ifremer, Phycotoxin Laboratory, F-44311, Nantes, France
| | - Amzil Zouher
- Institut Francaise de Recherche pour L'Exploitation de La Mer: Ifremer, Phycotoxin Laboratory, F-44311, Nantes, France
| | - Caruana Amandine
- Institut Francaise de Recherche pour L'Exploitation de La Mer: Ifremer, Phycotoxin Laboratory, F-44311, Nantes, France
| |
Collapse
|
10
|
Cook PF, Hoard VA, Dolui S, Frederick BD, Redfern R, Dennison SE, Halaska B, Bloom J, Kruse-Elliott KT, Whitmer ER, Trumbull EJ, Berns GS, Detre JA, D'Esposito M, Gulland FMD, Reichmuth C, Johnson SP, Field CL, Inglis BA. An MRI protocol for anatomical and functional evaluation of the California sea lion brain. J Neurosci Methods 2021; 353:109097. [PMID: 33581216 DOI: 10.1016/j.jneumeth.2021.109097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Domoic acid (DOM) is a neurotoxin produced by some harmful algae blooms in coastal waters. California sea lions (Zalophus californianus) exposed to DOM often strand on beaches where they exhibit a variety of symptoms, including seizures. These animals typically show hippocampal atrophy on MRI scans. NEW METHOD We describe an MRI protocol for comprehensive evaluation of DOM toxicosis in the sea lion brain. We intend to study brain development in pups exposed in utero. The protocol depicts the hippocampal formation as the primary region of interest. We include scans for quantitative morphometry, functional and structural connectivity, and a cerebral blood flow map. RESULTS High-resolution 3D anatomical scans facilitate post hoc slicing in arbitrary planes and accurate morphometry. We demonstrate the first cerebral blood flow map using MRI, and the first structural tractography from a live sea lion brain. COMPARISON WITH EXISTING METHODS Scans were compared to prior anatomical and functional studies in live sea lions, and structural connectivity in post mortem specimens. Hippocampal volumes were broadly in line with prior studies, with differences likely attributable to the 3D approach used here. Functional connectivity of the dorsal left hippocampus matched that found in a prior study conducted at a lower magnetic field, while structural connectivity in the live brain agreed with findings observed in post mortem studies. CONCLUSIONS Our protocol provides a comprehensive, longitudinal view of the functional and anatomical changes expected to result from DOM toxicosis. It can also screen for other common neurological pathologies and is suitable for any pinniped that can fit inside an MRI scanner.
Collapse
Affiliation(s)
- Peter F Cook
- Department of Biopsychology, New College of Florida, 5800 Bay Shore Road, Sarasota, FL, 34243, USA
| | - Vanessa A Hoard
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA, 94965, USA
| | - Sudipto Dolui
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Blaise deB Frederick
- Department of Psychiatry, Harvard University Medical School, 25 Shattuck St, Boston, MA, 02115, USA; McLean Hospital Brain Imaging Center, 115 Mill St., Belmont, MA, 02478, USA
| | - Richard Redfern
- Henry H. Wheeler, Jr. Brain Imaging Center, 188 Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, CA, 94720, USA
| | | | - Barbie Halaska
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA, 94965, USA
| | - Josh Bloom
- AnimalScan Advanced Veterinary Imaging, 934 Charter St, Redwood City, CA, 94063, USA
| | - Kris T Kruse-Elliott
- AnimalScan Advanced Veterinary Imaging, 934 Charter St, Redwood City, CA, 94063, USA
| | - Emily R Whitmer
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA, 94965, USA
| | - Emily J Trumbull
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA, 94965, USA
| | - Gregory S Berns
- Psychology Department, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - John A Detre
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA, 19104, USA; Department of Neurology, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Mark D'Esposito
- Henry H. Wheeler, Jr. Brain Imaging Center, 188 Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, CA, 94720, USA; Helen Wills Neuroscience Institute, University of California, 132 Barker Hall, Berkeley, CA, 94720, USA
| | - Frances M D Gulland
- School of Veterinary Medicine Wildlife Health Center, University of California at Davis, 1089 Veterinary Medicine Dr, Davis, CA, 95616, USA
| | - Colleen Reichmuth
- Long Marine Laboratory, Institute of Marine Sciences, University of California at Santa Cruz, 115 McAllister Way, Santa Cruz, CA, 95060, USA
| | - Shawn P Johnson
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA, 94965, USA
| | - Cara L Field
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA, 94965, USA
| | - Ben A Inglis
- Henry H. Wheeler, Jr. Brain Imaging Center, 188 Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|