1
|
Lozano-Bilbao E, Hardisson A, González-Weller D, Paz S, Rubio C, Gutiérrez ÁJ. Metal variability of the shrimp Palaemon elegans across coastal zones: anthropogenic and geological impacts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59882-59893. [PMID: 39361200 DOI: 10.1007/s11356-024-35207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/28/2024] [Indexed: 10/29/2024]
Abstract
This study focused on 120 specimens of the shrimp Palaemon elegans collected in intertidal zones in eight selected areas. This study aimed to assess the suitability of P. elegans as a bioindicator of natural and anthropogenic marine pollution. Metal concentrations of aluminum (Al), cadmium (Cd), copper (Cu), iron (Fe), lead (Pb), and zinc (Zn) were measured in shrimp collected from various sites in the Canary Islands, including areas affected by volcanic activity, industrial activity, and control zones. The determination of metal concentrations was conducted using inductively coupled plasma optical emission spectrophotometry (ICP-OES). The results showed significant differences in metal concentrations across the studied sites, with the highest levels of Al, Cu, Fe, Pb, and Zn observed in areas impacted by the Tajogaite volcanic eruption and harbor activity. Sites near old landfills and sewage pipes also exhibited elevated levels of Cd, Cu, and Pb, indicating strong anthropogenic influence. Al was found in the highest concentration in Harbour, reaching 25.7 ± 6.2 mg/kg, while the lowest concentration was observed in Control Lp at 11.5 ± 0.69 mg/kg. Conversely, lower metal concentrations were detected in control zones and areas with high dinoflagellate presence, suggesting a potential role of bioremediation by marine phytoplankton. The ability of P. elegans to accumulate metals in its tissues, particularly in areas of high pollution, highlights its potential as a bioindicator species. This study underscores the importance of P. elegans in monitoring marine pollution and provides insights into the environmental impact of both natural and human-induced contamination on coastal ecosystems.
Collapse
Affiliation(s)
- Enrique Lozano-Bilbao
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain.
- Grupo de Investigación en Ecología Marina Aplicada y Pesquerías (EMAP), Instituto de Investigación de Estudios Ambientales y Recursos Naturales (I-UNAT), Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017, Las Palmas de Gran Canaria, Las Palmas, Spain.
| | - Arturo Hardisson
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
| | - Dailos González-Weller
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
- Servicio Público Canario de Salud, Laboratorio Central. Santa Cruz de Tenerife, 38006, Santa Cruz de Tenerife, Spain
| | - Soraya Paz
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
| | - Carmen Rubio
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
| | - Ángel J Gutiérrez
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
| |
Collapse
|
2
|
Liu Q, Cui R, Du Y, Shen J, Jin C, Zhou X. Differential effects of petroleum hydrocarbons on the growing development and physiological characteristics of Ulva species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53291-53303. [PMID: 39186204 DOI: 10.1007/s11356-024-34782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
To compare the different effects of petroleum hydrocarbons on intertidal Ulva macroalgae, three dominant Ulva species (U. prolifera, U. linza, and U. lactuca) were exposed to two water-accommodated fractions (WAFs) of 0# diesel oil and crude oil at three concentration levels. The results indicated that two WAFs had significant concentration effects on the physiological characteristics of Ulva, the toxicity of 0# diesel oil was greater than crude oil, and crude oil had hormesis effect. Exposure of high WAFs concentrations, the growth, pigment, carbohydrate, and protein contents of Ulva were inhibited, while the antioxidant system was activated. In addition, the integrated biomarker response (IBR) indicated that U. prolifera had higher resistance to WAFs than U. linza and U. lactuca. Considering that U. prolifera is the main species of green tide in the Yellow Sea (YS) of China, the comparative effects of WAFs on different development stages of U. prolifera were also explored. The results showed that spore was the most sensitive to WAFs, while adult thalli was the most tolerant. The increased resistance of U. prolifera thalli and the hormesis effect triggered by crude oil may influence the outbreak scale of green tides. This study provides a new perspective for understanding the formation of green tides in the YS.
Collapse
Affiliation(s)
- Qing Liu
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ruifei Cui
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Yuxin Du
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Junjie Shen
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Cuili Jin
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Xiaojian Zhou
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| |
Collapse
|
3
|
Liu Q, Cui R, Du Y, Shen J, Jin C, Zhou X. The green tide causative-species Ulva prolifera responding to exposure to oil and dispersant. Heliyon 2024; 10:e29641. [PMID: 38698977 PMCID: PMC11064083 DOI: 10.1016/j.heliyon.2024.e29641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
In order to study the role of oil spills in the occurrence of green tide in the Yellow Sea, the physiological characteristics and photosynthetic activities of green tide causative-species Ulva prolifera was monitored under different conditions including two oil water-accommodated fractions (WAFs) of diesel oil and crude oil, dispersed water-accommodated fractions (DWAFs) and dispersant GM-2. The results showed that, the physiological parameters of U. prolifera including the growth, pigment, carbohydrate and protein contents decreased with the increased diesel oil WAF (WAFDO) concentration, while crude oil WAF (WAFCO) showed low concentration induction and high concentration inhibition effect. In addition, with the increase of WAFs concentration, two antioxidant activities were activated. However, compared with WAFDO alone and WAFCO alone, the mixture of oil and dispersant enhanced the toxicity on the above physiological characteristics of U. prolifera. On the other hand, the photosynthetic efficiency of U. prolifera showed a similar trend. Two WAFs showed significant concentration effects on the chlorophyll-a fluorescence transients and JIP-test. The addition of dispersant further blocked the electron flow beyond QA and from plastoquinone (PQ) to PSI acceptor side, damaged the active OEC centers at the PSII donor side, suppressed the pool size and the reduction rate of PSI acceptor side, and reduced the energy transfer efficiency between PSII functional units. These results implied that the crude oil spills may induce the formation of U. prolifera green tide, and the oil dispersant GM-2 used after the oil spills is unlikely to further stimulate the scale of bloom, while the diesel oil spills is always not conducive to the outbreak of green tide of U. prolifera.
Collapse
Affiliation(s)
- Qing Liu
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Ruifei Cui
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Yuxin Du
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Junjie Shen
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Cuili Jin
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Xiaojian Zhou
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| |
Collapse
|
4
|
Liu F, Huang Q, Du Y, Li S, Cai M, Huang X, Zheng F, Lin L. The interference of marine accidental and persistent petroleum hydrocarbons pollution on primary biomass and trace elements sink. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163812. [PMID: 37121328 DOI: 10.1016/j.scitotenv.2023.163812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
More than 80 % of the primary biomass in marine environments is provided by phytoplankton. The primary mechanism in the trace element sink is the absorption of trace elements by phytoplankton. Because of their difficult degradability and bioaccumulation, petroleum hydrocarbons are one of the most significant and priority organic contaminants in the marine environment. This study chose Chlorella pyrenoidosa as the model alga to be exposed to short and medium-term petroleum hydrocarbons. The ecological risk of accidental and persistent petroleum hydrocarbon contamination was thoroughly assessed. The interaction and intergenerational transmission of phytoplankton physiological markers and trace element absorption were explored to reflect the change in primary biomass and trace element sink. C. pyrenoidosa could produce a large number of reactive oxygen species stimulated by the concentration and exposure time of pollutants, which activated their antioxidant activity (superoxide dismutase (SOD) activity, β-carotene synthesis, antioxidant trace elements uptake) and peroxides production (hydroxyl radicals and malondialdehyde). The influence of the growth phase on SOD activity, copper absorption, and manganese adsorption in both persistent and accidental pollution was significant (p < 0.05, F > Fα). Adsorption of manganese and selenium positively connected with SOD, malondialdehyde, and Chlorophyl-a (p < 0.01). These findings convincingly indicate that petroleum hydrocarbon contamination can interfere with primary biomass and trace element sinks.
Collapse
Affiliation(s)
- Fengjiao Liu
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Qianyan Huang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Yanting Du
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Shunxing Li
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
| | - Minggang Cai
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Xuguang Huang
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Fengying Zheng
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Luxiu Lin
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
5
|
Kim HJ, Jeoung G, Kim KE, Park JS, Kang D, Baek SH, Lee CY, Kim H, Cho S, Lee TK, Jung SW. Co-variance between free-living bacteria and Cochlodinium polykrikoides (Dinophyta) harmful algal blooms, South Korea. HARMFUL ALGAE 2023; 122:102371. [PMID: 36754457 DOI: 10.1016/j.hal.2022.102371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
To understand the co-variance between common free-living bacteria and Cochlodinium polykrikoides harmful algal blooms (HABs) and their metabolic functions, we investigated 110 sampling sites in the Southern Sea of South Korea. These sampling sites were divided into three groups based on environmental factors and phytoplankton data with a similarity of 85% using non-metric multidimensional scaling. One group represented high-severity C. polykrikoides blooms, while the other two represented low-severity or no blooms. In high-severity HABs, inorganic phosphorous and dissolved organic carbon concentrations were strongly correlated with C. polykrikoides density (p < 0.01). This may reflect the changes in biochemical cycling due to inorganic and organic substrates released by HAB cells (or by cell destruction). Furthermore, 88 common bacterial operational taxonomic units (OTUs, with mean relative abundance > 1%) were identified. These included Gammaproteobacteria (36 OTUs), Flavobacteriia (24), Alphaproteobacteria (18), and other taxa (11). When C. polykrikoides blooms intensified, the relative abundances of Gammaproteobacteria also increased. OTU #030 (Flavicella sp., Flavobacteria, 96%) was positively correlated with C. polykrikoides abundance (r = 0.77, p < 0.001). Functional analysis based on the dominant bacterial OTUs revealed that chemoheterotrophy-related functions were more common in high-severity sites of HABs than in other groups. Therefore, the occurrence of HABs highlighted their interactions with bacteria and affected the bacterial community structure and metabolic functions.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 656-834, Republic of Korea
| | - Gaeul Jeoung
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 656-834, Republic of Korea
| | - Kang Eun Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 656-834, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Joon Sang Park
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 656-834, Republic of Korea
| | - Donhyug Kang
- Maritime Security and Safety Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Seung Ho Baek
- Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea; Ecological Risk Research Department, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Chol Young Lee
- Marine Bigdata Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Hansoo Kim
- Maritime Security and Safety Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Sungho Cho
- Maritime Security and Safety Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Taek-Kyun Lee
- Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea; Ecological Risk Research Department, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 656-834, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
6
|
From Surface Water to the Deep Sea: A Review on Factors Affecting the Biodegradation of Spilled Oil in Marine Environment. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Over the past century, the demand for petroleum products has increased rapidly, leading to higher oil extraction, processing and transportation, which result in numerous oil spills in coastal-marine environments. As the spilled oil can negatively affect the coastal-marine ecosystems, its transport and fates captured a significant interest of the scientific community and regulatory agencies. Typically, the environment has natural mechanisms (e.g., photooxidation, biodegradation, evaporation) to weather/degrade and remove the spilled oil from the environment. Among various oil weathering mechanisms, biodegradation by naturally occurring bacterial populations removes a majority of spilled oil, thus the focus on bioremediation has increased significantly. Helping in the marginal recognition of this promising technique for oil-spill degradation, this paper reviews recently published articles that will help broaden the understanding of the factors affecting biodegradation of spilled oil in coastal-marine environments. The goal of this review is to examine the effects of various environmental variables that contribute to oil degradation in the coastal-marine environments, as well as the factors that influence these processes. Physico-chemical parameters such as temperature, oxygen level, pressure, shoreline energy, salinity, and pH are taken into account. In general, increase in temperature, exposure to sunlight (photooxidation), dissolved oxygen (DO), nutrients (nitrogen, phosphorous and potassium), shoreline energy (physical advection—waves) and diverse hydrocarbon-degrading microorganisms consortium were found to increase spilled oil degradation in marine environments. In contrast, higher initial oil concentration and seawater pressure can lower oil degradation rates. There is limited information on the influences of seawater pH and salinity on oil degradation, thus warranting additional research. This comprehensive review can be used as a guide for bioremediation modeling and mitigating future oil spill pollution in the marine environment by utilizing the bacteria adapted to certain conditions.
Collapse
|
7
|
Malych R, Stopka P, Mach J, Kotabová E, Prášil O, Sutak R. Flow cytometry-based study of model marine microalgal consortia revealed an ecological advantage of siderophore utilization by the dinoflagellate Amphidinium carterae. Comput Struct Biotechnol J 2021; 20:287-295. [PMID: 35024100 PMCID: PMC8718654 DOI: 10.1016/j.csbj.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/09/2022] Open
Abstract
Investigations of phytoplankton responses to iron stress in seawater are complicated by the fact that iron concentrations do not necessarily reflect bioavailability. Most studies to date have been based on single species or field samples and are problematic to interpret. Here, we report results from an experimental cocultivation model system that enabled us to evaluate interspecific competition as a function of iron content and form, and to study the effect of nutritional conditions on the proteomic profiles of individual species. Our study revealed that the dinoflagellate Amphidinium carterae was able to utilize iron from a hydroxamate siderophore, a strategy that could provide an ecological advantage in environments where siderophores present an important source of iron. Additionally, proteomic analysis allowed us to identify a potential candidate protein involved in iron acquisition from hydroxamate siderophores, a strategy that is largely unknown in eukaryotic phytoplankton.
Collapse
Key Words
- (s)PLS-DA, (sparse) partial least squares discriminant analysis
- AUC, area under curve
- Amphidinium carterae
- AtpE, ATP synthase
- BCS, bathocuproinedisulfonic acid disodium salt
- CREG1, cellular repressor of E1A stimulated genes 1
- DFOB, desferrioxamine B
- EDTA, ethylenediaminetetraacetic acid
- ENT, enterobactin
- FACS, fluorescence-activated cell sorting
- FBAI, fructose-bisphosphate aldolase I
- FBAII, fructose-bisphosphate aldolase II
- FBP1, putative ferrichrome-binding protein
- FOB, ferrioxamine B
- Flow cytometry
- ISIP, iron starvation induced protein
- Iron
- LHCX, light-harvesting complex subunits
- LL, long-term iron limitation
- LR, iron enrichment
- Marine microalgae
- NBD, nitrobenz-2-oxa-1,3-diazole
- NPQ, nonphotochemical quenching
- PAGE, polyacrylamide gel electrophoresis
- PSI, photosystem I
- PSII, photosystem II
- PetA, cytochrome b6/f
- Proteomics
- PsaC, photosystem I iron-sulfur center
- PsaD, photosystem I reaction center subunit II
- PsaE, photosystem I reaction center subunit IV
- PsaL, photosystem I reaction center subunit XI
- PsbC, photosystem II CP43 reaction center protein
- PsbV, cytochrome c-550
- RR, long-term iron sufficiency
- SOD1, superoxide dismutase [Cu-Zn]
- Siderophores
Collapse
Affiliation(s)
- Ronald Malych
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech
| | - Eva Kotabová
- Institute of Microbiology, Academy of Sciences, Centrum Algatech, Trebon, Czech
| | - Ondřej Prášil
- Institute of Microbiology, Academy of Sciences, Centrum Algatech, Trebon, Czech
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech
| |
Collapse
|
8
|
Zhang H, Zhou Y, Kong Q, Dong W, Lin Z. Toxicity of Naphthenic Acids on the Chlorophyll Fluorescence Parameters and Antioxidant Enzyme Activity of Heterosigma akashiwo. Antioxidants (Basel) 2021; 10:antiox10101582. [PMID: 34679717 PMCID: PMC8533473 DOI: 10.3390/antiox10101582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 01/14/2023] Open
Abstract
Petroleum hydrocarbons can serve as a carbon source for marine phytoplankton; so, marine high-acid crude oil pollution events are likely to result in algal outbreaks or harmful algal blooms (HABs) in surface waters. Naphthenic acids (NAs) are the primary acidic component of crude oil, and red tide is of great concern due to its high diffusivity and strong destructive properties. It is important to study the mechanism of the toxic effect of NAs on the typical red tide algae, Heterosigma akashiwo, for the balance and stability of marine algae. The mechanism of NAs’ damage effect was investigated in terms of the antioxidant enzyme activity, cell number, the chlorophyll positive fluorescence parameters, and the cell morphology of microalgae. Experiments confirmed the hormesis of low-concentration (0.5, 2, and 4 mg/L) NAs on Heterosigma akashiwo, and the indicators of high-concentration (8 and 16 mg/L) NA exposures showed inhibition. In this study, the toxic effect of NAs on the target organism showed a clear concentration–dose relationship. The 16 mg/L NAs stress caused severe damage to the morphology and structure of the target biological cells in a short time (96 h), and the population growth decreased. The target organisms showed a staged oxidative stress response to NAs. The behavior in the low-concentration treatment groups showed toxicant excitatory effects on the photosynthetic efficiency and antioxidant enzyme activity of the target organisms. This study provides theoretical and practical data for the development of an important toxicological model of the toxicant’s excitement effects and antioxidant defense mechanisms. In addition, it provides prospective research data for the prediction and avoidance of ecological risk from NA pollution in marine environments.
Collapse
Affiliation(s)
- Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China; (Y.Z.); (Q.K.)
- Correspondence: ; Tel.: +86-157-6225-6586
| | - Yumiao Zhou
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China; (Y.Z.); (Q.K.)
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China; (Y.Z.); (Q.K.)
| | - Wenlong Dong
- Shandong Marine Forecast and Hazard Mitigation Service, Qingdao 266104, China;
| | - Zhihao Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China;
| |
Collapse
|
9
|
Henrichs DW, Anglès S, Gaonkar CC, Campbell L. Application of a convolutional neural network to improve automated early warning of harmful algal blooms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28544-28555. [PMID: 33547607 DOI: 10.1007/s11356-021-12471-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Continuous monitoring and early warning together represent an important mitigation strategy for harmful algal blooms (HAB). The coast of Texas experiences periodic blooms of three HAB dinoflagellates: Karenia brevis, Dinophysis ovum, and Prorocentrum texanum. A plankton image data set acquired by an Imaging FlowCytobot over a decade of operation was used to train and evaluate two new automated image classifiers. A 112 class, random forest classifier (RF_112) and a 112 class, convolutional neural network classifier (CNN_112) were developed and compared with an existing, 54 class, random forest classifier (RF_54) already in use as an early warning notification system. Both 112 class classifiers exhibited improved performance over the RF_54 classifier when tested on three different HAB species with the CNN_112 classifier producing fewer false positives and false negatives in most of the cases tested. For K. brevis and P. texanum, the current threshold of 2 cells.mL-1 was identified as the best threshold to minimize the number of false positives and false negatives. For D. ovum, a threshold of 1 cell.mL-1 was found to produce the best results with regard to the number of false positives/negatives. A lower threshold will result in earlier notification of an increase in cell concentration and will provide state health managers with increased lead time to prepare for an impending HAB.
Collapse
Affiliation(s)
- Darren W Henrichs
- Department of Oceanography, Texas A&M University, College Station, TX, 77843-3146, USA.
| | - Sílvia Anglès
- Department of Oceanography, Texas A&M University, College Station, TX, 77843-3146, USA
- Advanced Science Research Center at the Graduate Center, City University of New York, New York, USA
| | - Chetan C Gaonkar
- Department of Oceanography, Texas A&M University, College Station, TX, 77843-3146, USA
| | - Lisa Campbell
- Department of Oceanography, Texas A&M University, College Station, TX, 77843-3146, USA
| |
Collapse
|
10
|
Quigg A, Parsons M, Bargu S, Ozhan K, Daly KL, Chakraborty S, Kamalanathan M, Erdner D, Cosgrove S, Buskey EJ. Marine phytoplankton responses to oil and dispersant exposures: Knowledge gained since the Deepwater Horizon oil spill. MARINE POLLUTION BULLETIN 2021; 164:112074. [PMID: 33540275 DOI: 10.1016/j.marpolbul.2021.112074] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
The Deepwater Horizon oil spill of 2010 brought the ecology and health of the Gulf of Mexico to the forefront of the public's and scientific community's attention. Not only did we need a better understanding of how this oil spill impacted the Gulf of Mexico ecosystem, but we also needed to apply this knowledge to help assess impacts from perturbations in the region and guide future response actions. Phytoplankton represent the base of the food web in oceanic systems. As such, alterations of the phytoplankton community propagate to upper trophic levels. This review brings together new insights into the influence of oil and dispersant on phytoplankton. We bring together laboratory, mesocosm and field experiments, including insights into novel observations of harmful algal bloom (HAB) forming species and zooplankton as well as bacteria-phytoplankton interactions. We finish by addressing knowledge gaps and highlighting key topics for research in novel areas.
Collapse
Affiliation(s)
- Antonietta Quigg
- Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA.
| | - Michael Parsons
- Florida Gulf Coast University, 10501 FGCU Blvd South, Fort Myers, FL 33965, USA.
| | - Sibel Bargu
- Louisiana State University, 1235 Energy, Coast & Environment Building, Baton Rouge, LA 70803, USA.
| | - Koray Ozhan
- Middle East Technical University, P.O. Box 28, 33731 Erdemli, Mersin, Turkey.
| | - Kendra L Daly
- University of South Florida, 140 Seventh Ave S., St. Petersburg, FL 33701, USA.
| | - Sumit Chakraborty
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| | - Manoj Kamalanathan
- Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA.
| | - Deana Erdner
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | - Sarah Cosgrove
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | - Edward J Buskey
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|